Interest in macrocyclic lanthanide complexes such as DOTA is driven largely through interest in their use as contrast agents for MRI. The lanthanide tetraamide derivatives of DOTA have shown considerable promise as PARACEST agents, taking advantage of the slow water exchange kinetics of this class of complex. We postulated that water exchange in these tetraamide complexes could be slowed even further by introducing a group to sterically encumber the space above the water coordination site, thereby hindering the departure and approach of water molecules to the complex.
View Article and Find Full Text PDFThe temperature dependence of the solution equilibrium constants for [((t)Bu)(2)Al(OPh)]2(mu-4,4'-bipy)(1a), [((t)Bu)2Al(OPh)](2)(mu-bipetha)(2a, bipetha = 1,2-bis(4-pyridyl)ethane), and [((t)Bu)(2)Al(OPh)]2(mu-bipethe)(3a, bipethe =trans-1,2-bis(4-pyridyl)ethylene) in C6D6 and CDCl(3) allow for the determination of DeltaH and DeltaS for the dissociation of one Al(tBu)2OPh moiety from the bridging ligand, i.e., 2[(tBu)2AL(OPh)]2(mu-L)<==>(K1)2AL(OPh)(tBu)2(L)+[(tBu)2Al(mu-OPh)]2.
View Article and Find Full Text PDFThe reaction of AlMe(3) and [((t)Bu)(2)Al(micro-OPh)](2) with pyrazine (pyz), 4,4'-bipyridine (4-4'-bipy), 1,2-bis(4-pyridyl)ethane (bpetha) and 1,2-bis(4-pyridyl)ethylene (bpethe) yields (Me(3)Al)(2)(micro-pyz)(1), (Me(3)Al)(2)(micro-4,4'-bipy)(2), (Me(3)Al)(2)(micro-bpetha)(3), (Me(3)Al)(2)(micro-bipethe)(4), Al((t)Bu)(2)(OPh)(pyz)(5), [((t)Bu)(2)Al(OPh)](2)(micro-4,4-bipy)(6a), [((t)Bu)(2)Al(OPh)](2)(micro-bpetha)(7a), [((t)Bu)(2)Al(OPh)](2)(micro-bipethe)(8a). Compounds 1-4, 6a and 7a have been confirmed by X-ray crystallography. In solution compounds 1-4 undergo a rapid ligand-dissociation equilibrium resulting in a time-average spectrum in the (1)H NMR.
View Article and Find Full Text PDFTwo gadolinium(III) chelates, GdNP-DO3A (1-methlyene-(p-NitroPhenol)-1,4,7,10-tetraazacycloDOdecane-4,7,10-triAcetate) and GdNP-DO3AM (1-methlyene(p-NitroPhenol)-1,4,7,10-tetraazacycloDOdecane-4,7,10-triacetAMide), containing a single nitrophenolic pendant arm plus either three acetate or three amide pendant arms were synthesized and characterized. The properties of the gadolinium, terbium, and dysprosium complexes of these ligands were examined as a function of pH. The extent and mechanism of the changes in water relaxivity with pH of each gadolinium complex was found to differ substantially for the two complexes.
View Article and Find Full Text PDF