Publications by authors named "Doug Aaron"

High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect allows for the tailoring of the alloy composition to facilitate specific electrochemical reactions.

View Article and Find Full Text PDF

Directional graphene aerogels (DGAs) are proposed as electrode materials to alleviate ionic and mass transport issues in organic redox flow batteries (ORFBs). DGAs with high pore directionality would provide low resistance channels for effective ionic charge and liquid electrolyte transport in these devices. DGAs' porous and directional characteristics can be controlled by the growth of ice crystals during freeze casting, which is influenced by the self-diffusivity of water, phase change driving forces, water-ice graphene interactions, and convection in the water-graphene media.

View Article and Find Full Text PDF

Among various components commonly used in redox flow batteries (RFBs), the separator plays a significant role, influencing resistance to current as well as capacity decay via unintended crossover. It is well-established that the ohmic overpotential is dominated by the membrane and interfacial resistance in most aqueous RFBs. The ultimate goal of engineering membranes is to improve the ionic conductivity while keeping crossover at a minimum.

View Article and Find Full Text PDF

Nitrogen-doped graphene quantum dots (GQDs) and graphitic carbon nitride (g-CN) quantum dots are synthesized via a solid-phase microwave-assisted (SPMA) technique. The resulting GQDs are deposited on graphite felt (GF) and are employed as high-performance electrodes for all-vanadium redox flow batteries (VRFBs). The SPMA method is capable of synthesizing highly oxidized and amidized GQDs using citric acid and urea as the precursor.

View Article and Find Full Text PDF

One of the major sources of lost capacity in all-vanadium redox flow batteries (VRFBs) is the undesired transport (usually called crossover) of water and vanadium ions through the ion-exchange membrane. In this work, an experimental assessment of the impact of ion-exchange membrane properties on vanadium ion crossover and capacity decay of VRFBs has been performed. Two types of cationic membranes (non-reinforced and reinforced) with three equivalent weights of 800, 950 and 1100 g·mol were investigated via a series of in situ performance and capacity decay tests along with ex situ vanadium crossover measurement and membrane characterization.

View Article and Find Full Text PDF

Changes in the anode, cathode, and solution/membrane impedances during enrichment of an anode microbial consortium were measured using electrochemical impedance spectroscopy. The consortium was enriched in a compact, flow-through porous electrode chamber coupled to an air-cathode. The anode impedance initially decreased from 296.

View Article and Find Full Text PDF