Publications by authors named "Doug A Lauffenburger"

The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches.

View Article and Find Full Text PDF

Secreted active proteases, from families of enzymes such as matrix metalloproteinases (MMPs) and ADAMs (a disintegrin and metalloproteinases), participate in diverse pathological processes. To simultaneously measure multiple specific protease activities, a series of parallel enzyme reactions combined with a series of inhibitor analyses for proteolytic activity matrix analysis (PrAMA) are essential but limited due to the sample quantity requirements and the complexity of performing multiple reactions. To address these issues, we developed a pico-injector array to generate 72 different reactions in picoliter-volume droplets by controlling the sequence of combinational injections, which allowed simultaneous recording of a wide range of multiple enzyme reactions and measurement of inhibitor effects using small sample volumes (~10 μL).

View Article and Find Full Text PDF

We previously demonstrated that embryonic stem (ES) cell self-renewal required sustained signaling by leukemia inhibitory factor (LIF) in a concentration-dependent manner, allowing us to hypothesize that thresholds in ligand-receptor signaling modulate stem cell differentiation control. To test this hypothesis, we have experimentally and computationally compared the abilities of two gp130-signaling cytokines (LIF and Hyper-interleukin-6 [HIL-6]) to sustain ES cell self-renewal. Quantitative measurements of ES cell phenotypic markers (stage-specific embryonic antigen-1 and E-cadherin), functional assays (alkaline phosphatase activity and embryoid body formation efficiency), and transcription factor (Oct-4) expression over a range of LIF and HIL-6 concentrations demonstrated a superior ability of LIF to maintain ES cell pluripotentiality at higher concentrations (> or =500 pM).

View Article and Find Full Text PDF