MOF-based photoelectrocatalysis (PEC) using CO as an electron donor offers a green, clean, and extensible way to make hydrocarbon fuels under more tolerant conditions. Herein, basic principles of PEC reduction of CO and the preparation methods and characterization techniques of MOF-based materials are summarized. Furthermore, three applications of MOFs for improving the photoelectrocatalytic performance of CO reduction are described: (i) as photoelectrode alone; (ii) as a co-catalyst of semiconductor photoelectrode or as a substrate for loading dyes, quantum dots, and other co-catalysts; (iii) as one of the components of heterojunction structure.
View Article and Find Full Text PDFBackground Biliary obstruction leads to an increase in biliary pressure within the biliary system, which induces the morphologic adaptation of the biliary tree. Purpose To observe and to quantify the morphologic characteristics of the adaptation in a bile duct ligation rat model and verify it in patients with biliary atresia in a three-dimensional (3D) manner using x-ray phase-contrast CT. Materials and Methods A bile duct ligation model was induced in 40 male Sprague-Dawley rats, which were divided into five groups: the control group (no ligation) and groups 2, 4, 6, and 8 weeks after bile duct ligation (eight animals in each group).
View Article and Find Full Text PDFTransforming growth factor-beta 1 (TGF-β1) plays a central role in hepatic progenitor cells- (HPCs-) mediated liver repair and fibrosis. However, different effects of TGF-β1 on progenitor cells have not been described. In this study, both in vitro (HPCs cocultured with hepatic stellate cells (HSCs) in transwells) and in vivo (CCl4-injured liver fibrosis rat) systems were used to evaluate the impacts.
View Article and Find Full Text PDF