J Chem Inf Model
December 2024
Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings.
View Article and Find Full Text PDFCyclic peptides have emerged as a highly promising class of therapeutic molecules owing to their favorable pharmacokinetic properties, including stability and permeability. Currently, many clinically approved cyclic peptides are derived from natural products or their derivatives, and the development of molecular docking techniques for cyclic peptide discovery holds great promise for expanding the applications and potential of this class of molecules. Given the availability of numerous docking programs, there is a pressing need for a systematic evaluation of their performance, specifically on protein-cyclic peptide systems.
View Article and Find Full Text PDFDeep learning-based molecular generative models have garnered emerging attention for their capability to generate molecules with novel structures and desired physicochemical properties. However, the evaluation of these models, particularly in a biological context, remains insufficient. To address the limitations of existing metrics and emulate practical application scenarios, we construct the RediscMol benchmark that comprises active molecules extracted from 5 kinase and 3 GPCR data sets.
View Article and Find Full Text PDF