Publications by authors named "Dostanic S"

Statins may reduce abdominal aortic aneurysm (AAA) progression. We sought to measure how atorvastatin (AT) treatment might modulate matrix metalloproteinase (MMP) expression and/or activity in human AAA. Tissue from human AAAs at surgical repair was obtained from patients who were either not on statins (NST, n = 19) or treated with AT (n = 19).

View Article and Find Full Text PDF

Chronic apoptosis activation may participate in abdominal aortic aneurysm (AAA) expansion. Statin treatment slows AAA progression independent of cholesterol lowering. We hypothesized that Atorvastatin treatment alters apoptosis protein expression and activation in AAAs.

View Article and Find Full Text PDF

Objective: Increased expression of the transcription factor early growth response gene-1 (Egr-1) accompanies catecholamine infusion. Catecholamine-treated, Egr-1-deficient (-/-) mice show exacerbated cardiac damage when compared to similarly treated wild-type (+/+) mice, suggesting that Egr-1 reduces heart damage. We sought to identify Egr-1-mediated cardiac sparing genes.

View Article and Find Full Text PDF

Prolonged activation of the sympathetic nervous system is deleterious to heart function. In vitro beta1-adrenergic activation promotes apoptosis, whereas beta2-adrenergic activation reduces apoptosis in cultured adult cardiomyocytes. To determine the effect of chronic catecholamine infusion in vivo, we measured apoptosis marker expression in C57Bl/6 and catecholamine-sensitive Egr-1 deficient mice after treatment with the nonspecific beta-adrenergic agonist, isoproterenol, the beta1-specific agonist, dobutamine, or the beta2-specific agonist, metaproterenol.

View Article and Find Full Text PDF

Doxorubicin (DOX), an anticancer drug, causes a dose-dependent cardiotoxicity. Some evidence suggests that female children have an increased risk for DOX-mediated cardiac damage. To determine whether the iron chelator dexrazoxane (DXR) could reduce DOX-induced cardiotoxicity in the young, we injected day 10 neonate female and male rat pups with a single dose of saline or DOX, DXR, or DXR + DOX (20:1).

View Article and Find Full Text PDF

The transcription factor E2F1 mRNA and protein levels increased in rat cortical neurons in response to dopamine (DA)- or 6-hydroxydopamine (OHDA)-evoked apoptosis. Increased E2F1 protein was detected in the nucleus of neurons by double fluorescent immunocytochemistry using antibodies to E2F1 and NeuN. DA and 6-OHDA induced caspase-3-mediated apoptosis of cortical neurons which was attenuated by the addition of antioxidants or caspase-3 inhibitors to the cultures.

View Article and Find Full Text PDF