Aims: We previously quantified the hypoglycaemia-sparing effect of portal vs peripheral human insulin delivery. The current investigation aimed to determine whether a bioequivalent peripheral vein infusion of a hepatopreferential insulin analog, insulin-406, could similarly protect against hypoglycaemia.
Materials And Methods: Dogs received human insulin infusions into either the hepatic portal vein (PoHI, n = 7) or a peripheral vein (PeHI, n = 7) for 180 minutes at four-fold the basal secretion rate (6.
Hypoglycemia limits optimal glycemic control in type 1 diabetes mellitus (T1DM), making novel strategies to mitigate it desirable. We hypothesized that portal (Po) vein insulin delivery would lessen hypoglycemia. In the conscious dog, insulin was infused into the hepatic Po vein or a peripheral (Pe) vein at a rate four times of basal.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
May 2015
Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.
View Article and Find Full Text PDFIn dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal).
View Article and Find Full Text PDFThe aim of this study was to elucidate the impact of a high-fat, high-fructose diet (HFFD; fat, 52%; fructose, 17%), in the presence of a partial (~65%) pancreatectomy (PPx), on the response of the liver and extrahepatic tissues to an orally administered, liquid mixed meal. Adult male dogs were fed either a nonpurified, canine control diet (CTR; fat, 26%; no fructose; n = 5) or a HFFD (n = 5) for 8 wk. Diets were provided in a quantity to maintain neutral or positive energy balance in CTR or HFFD, respectively.
View Article and Find Full Text PDFObjective: The objective of this study was to determine how increasing the hepatic glycogen content would affect the liver's ability to take up and metabolize glucose.
Research Design And Methods: During the first 4 h of the study, liver glycogen deposition was stimulated by intraportal fructose infusion in the presence of hyperglycemic-normoinsulinemia. This was followed by a 2-h hyperglycemic-normoinsulinemic control period, during which the fructose infusion was stopped, and a 2-h experimental period in which net hepatic glucose uptake (NHGU) and disposition (glycogen, lactate, and CO(2)) were measured in the absence of fructose but in the presence of a hyperglycemic-hyperinsulinemic challenge including portal vein glucose infusion.
Am J Physiol Endocrinol Metab
December 2010
The objective of this study was to assess the response of a large animal model to high dietary fat and fructose (HFFD). Three different metabolic assessments were performed during 13 wk of feeding an HFFD (n = 10) or chow control (CTR, n = 4) diet: oral glucose tolerance tests (OGTTs; baseline, 4 and 8 wk), hyperinsulinemic-euglycemic clamps (HIEGs; baseline and 10 wk) and hyperinsulinemic-hyperglycemic clamps (HIHGs, 13 wk). The ΔAUC for glucose during the OGTTs more than doubled after 4 and 8 wk of HFFD feeding, and the average glucose infusion rate required to maintain euglycemia during the HIEG clamps decreased by ≈30% after 10 wk of HFFD feeding.
View Article and Find Full Text PDFObjective: Insulin-mediated suppression of hepatic glucose production (HGP) is associated with sensitive intracellular signaling and molecular inhibition of gluconeogenic (GNG) enzyme mRNA expression. We determined, for the first time, the time course and relevance (to metabolic flux) of these molecular events during physiological hyperinsulinemia in vivo in a large animal model.
Research Design And Methods: 24 h fasted dogs were infused with somatostatin, while insulin (basal or 8 x basal) and glucagon (basal) were replaced intraportally.
Objective: Insulin represses the expression of gluconeogenic genes at the mRNA level, but the hormone appears to have only weak inhibitory effects in vivo. The aims of this study were 1) to determine the maximal physiologic effect of insulin, 2) to determine the relative importance of its effects on gluconeogenic regulatory sites, and 3) to correlate those changes with alterations at the cellular level.
Research Design And Methods: Conscious 60-h fasted canines were studied at three insulin levels (near basal, 4x, or 16x) during a 5-h euglycemic clamp.
To examine whether escitalopram enhances net hepatic glucose uptake during a hyperinsulinemic hyperglycemic clamp, studies were performed in conscious 42-h-fasted dogs. The experimental period was divided into P1 (0-90 min) and P2 (90-270 min). During P1 and P2 somatostatin (to inhibit insulin and glucagon secretion), 4x basal intraportal insulin, basal intraportal glucagon, and peripheral glucose (2x hepatic glucose load) were infused.
View Article and Find Full Text PDFDiabetic patients treated with inhaled insulin exhibit reduced fasting plasma glucose levels. In dogs, insulin action in muscle is enhanced for as long as 3 h after insulin inhalation. This study was designed to determine whether this effect lasts for a prolonged duration such that it could explain the effect observed in diabetic patients.
View Article and Find Full Text PDFObjective: This study investigated the acute effects of treatment with vildagliptin on dipeptidyl peptidase-4 (DPP-4) activity, glucagon-like peptide 1 (GLP-1) concentration, pancreatic hormone levels, and glucose metabolism. The primary aims were to determine the effects of DPP-4 inhibition on GLP-1 clearance and on hepatic glucose uptake.
Research Design And Methods: Fasted conscious dogs were studied in the presence (n = 6) or absence (control, n = 6) of oral vildagliptin (1 mg/kg).
Am J Physiol Regul Integr Comp Physiol
April 2008
We examined whether intraportal delivery of neuropeptide Y (NPY) affects glucose metabolism in 42-h-fasted conscious dogs using arteriovenous difference methodology. The experimental period was divided into three subperiods (P1, P2, and P3). During all subperiods, the dogs received infusions of somatostatin, intraportal insulin (threefold basal), intraportal glucagon (basal), and peripheral intravenous glucose to increase the hepatic glucose load twofold basal.
View Article and Find Full Text PDFHepatic portal venous infusion of nitric oxide synthase (NOS) inhibitors causes muscle insulin resistance, but the effects on hepatic glucose disposition are unknown. Conscious dogs underwent a hyperinsulinemic (4-fold basal) hyperglycemic (hepatic glucose load 2-fold basal) clamp, with assessment of liver metabolism by arteriovenous difference methods. After 90 min (P1), dogs were divided into two groups: control (receiving intraportal saline infusion; n = 8) and LN [receiving N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor; n = 11] intraportally at 0.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
February 2008
To determine the role of nitric oxide in regulating net hepatic glucose uptake (NHGU) in vivo, studies were performed on three groups of 42-h-fasted conscious dogs using a nitric oxide donor [3-morpholinosydnonimine (SIN-1)]. The experimental period was divided into period 1 (0-90 min) and period 2 (P2; 90-240 min). At 0 min, somatostatin was infused peripherally, and insulin (4-fold basal) and glucagon (basal) were given intraportally.
View Article and Find Full Text PDFWe examined the role of vagus nerves in the transmission of the portal glucose signal in conscious dogs. At time 0, somatostatin infusion was started along with intraportal insulin and glucagon at 4-fold basal and basal rates, respectively. Glucose was infused via a peripheral vein to create hyperglycemia ( approximately 2 fold basal).
View Article and Find Full Text PDFElevated glucagon is associated with fasting hyperglycemia in type 2 diabetes. We assessed the effects of the glucagon receptor antagonist (2R)-N-[4-({4-(1-cyclohexen-1-yl)[(3,5-dichloroanilino)carbonyl]anilino}methyl)benzoyl]-2-hydroxy-b-alanine (NNC 25-0926) on hepatic glucose production (HPG) in vivo, using arteriovenous difference and tracer techniques in conscious dogs. The experiments consisted of equilibration (-140 to -40 min), control (40-0 min), and experimental [0-180 min, divided into P1 (0-60 min) and P2 (60-180 min)] periods.
View Article and Find Full Text PDFThis study assessed the site of increased glucose uptake resulting from insulin inhalation, quantified its effect under steady-state glucose concentrations, and identified the time to onset of effect. Human insulin was administered to 13 beagles via inhalation (Exubera [insulin human (rDNA origin)] Inhalation Powder; n = 7) or infusion into the inferior vena cava (Humulin R; n = 6) using an algorithm to match plasma insulin levels and kinetics for both groups. Somatostatin and glucagon were infused.
View Article and Find Full Text PDFThis study compared the effects of endogenous (portal) insulin secretion versus peripheral insulin administration with subcutaneous or inhaled human insulin [INH; Exubera, insulin human (rDNA origin) inhalation powder] on glucose disposal in fasted dogs. In the control group, glucose was infused into the portal vein (Endo; n = 6). In two other groups, glucose was infused portally, whereas insulin was administered peripherally by inhalation (n = 13) or s.
View Article and Find Full Text PDFInsulin inhibits glucose production through both direct and indirect effects on the liver; however, considerable controversy exists regarding the relative importance of these effects. The first aim of this study was to determine which of these processes dominates the acute control of hepatic glucose production (HGP). Somatostatin and portal vein infusions of insulin and glucagon were used to clamp the pancreatic hormones at basal levels in the nondiabetic dog.
View Article and Find Full Text PDFThe present studies were designed to determine if totally pancreatectomized dogs that underwent islet auto-transplantation retained a functional pancreatic counterregulatory response to mild non-insulin-induced hypoglycemia. Six dogs underwent total pancreatectomy followed by islet auto-transplantation to spleen or omentum. The animals recovered and fasting plasma glucose and insulin levels were normal.
View Article and Find Full Text PDFPortal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2005
Whether glucagon-like peptide (GLP)-1 requires the hepatic portal vein to elicit its insulin secretion-independent effects on glucose disposal in vivo was assessed in conscious dogs using tracer and arteriovenous difference techniques. In study 1, six conscious overnight-fasted dogs underwent oral glucose tolerance testing (OGTT) to determine target GLP-1 concentrations during clamp studies. Peak arterial and portal values during OGTT ranged from 23 to 65 pM and from 46 to 113 pM, respectively.
View Article and Find Full Text PDFThe results of the present study, using the conscious beagle dog, demonstrate that inhaled insulin (INH; Exubera) provides better glycemic control during an intraportal glucose load than identical insulin levels induced by insulin (Humulin) infusion into the inferior vena cava (IVC). In the INH group (n = 13), portal glucose infusion caused arterial plasma glucose to rise transiently (152 +/- 9 mg/dl), before it returned to baseline (65 min) for the next 2 h. Net hepatic glucose uptake was minimal, whereas nonhepatic uptake rose to 12.
View Article and Find Full Text PDF