The synthesis and characterization of a series of light-driven third-generation molecular motors featuring various structural modifications at the central aromatic core are presented. We explore a number of substitution patterns, such as 1,2-dimethoxybenzene, naphthyl, 1,2-dichlorobenzene, 1,1':2',1″-terphenyl, 4,4″-dimethoxy-1,1':2',1″-terphenyl, and 1,2-dicarbomethoxybenzene, considered essential for designing future responsive systems. In many cases, the synthetic routes for both synthetic intermediates and motors reported here are modular, allowing for their post-functionalization.
View Article and Find Full Text PDFThe coupling of organolithium reagents, including strongly hindered examples, at cryogenic temperatures (as low as -78 °C) has been achieved with high-reactivity Pd-NHC catalysts. A temperature-dependent chemoselectivity trigger has been developed for the selective coupling of aryl bromides in the presence of chlorides. Building on this, a one-pot, sequential coupling strategy is presented for the rapid construction of advanced building blocks.
View Article and Find Full Text PDFThe synthesis of functionalized (benz)aldehydes, via a two-step, one-pot procedure, is presented. The method employs a stable aluminum hemiaminal as a tetrahedral intermediate, protecting a latent aldehyde, making it suitable for subsequent cross-coupling with (strong nucleophilic) organometallic reagents, leading to a variety of alkyl and aryl substituted benzaldehydes. This very fast methodology also facilitates the effective synthesis of a C radiolabeled aldehyde.
View Article and Find Full Text PDFA general one-pot procedure for the 1,2-addition of organolithium reagents to amides followed by the Buchwald-Hartwig amination with in situ released lithium amides is presented. In this work amides are used as masked ketones, revealed by the addition of organolithium reagents which generates a lithium amide, suitable for subsequent Buchwald-Hartwig coupling in the presence of a palladium catalyst. This methodology allows for rapid, efficient and atom economic synthesis of aminoarylketones in good yields.
View Article and Find Full Text PDFThe direct carbolithiation of diphenylacetylenes and their cross-coupling procedure taking advantage of the intermediate alkenyllithium reagents are presented. By employing our recently discovered highly active palladium nanoparticle based catalyst, we were able to couple an alkenyllithium reagent with a high (Z/E) selectivity (10 : 1) and good yield to give the breast cancer drug tamoxifen in just 2 steps from commercially available starting materials and with excellent atom economy and reaction mass efficiency.
View Article and Find Full Text PDFThe discovery of an ultrafast cross-coupling of alkyl- and aryllithium reagents with a range of aryl bromides is presented. The essential role of molecular oxygen to form the active palladium catalyst was established; palladium nanoparticles that are highly active in cross-coupling reactions with reaction times ranging from 5 s to 5 min are thus generated in situ. High selectivities were observed for a range of heterocycles and functional groups as well as for an expanded scope of organolithium reagents.
View Article and Find Full Text PDFDespite its status as one of the world's most prevalent and deadly bacterial pathogens, Mycobacterium tuberculosis (Mtb) infection is not routinely diagnosed by rapid and highly reliable tests. A program to discover Mtb-specific biomarkers recently identified two natural compounds, 1-tuberculosinyl adenosine (1-TbAd) and N(6)-tuberculosinyl adenosine (N(6)-TbAd). Based on their association with virulence, the lack of similar compounds in nature, the presence of multiple stereocenters, and the need for abundant products to develop diagnostic tests, synthesis of these compounds was considered to be of high value but challenging.
View Article and Find Full Text PDFA palladium-catalyzed direct synthesis of symmetric biaryl compounds from aryl halides in the presence of tBuLi is described. In situ lithium-halogen exchange generates the corresponding aryl lithium reagent, which undergoes a homocoupling reaction with a second molecule of the aryl halide in the presence of the palladium catalyst (1 mol %). The reaction takes place at room temperature, is fast (1 h), and affords the corresponding biaryl compounds in good to excellent yields.
View Article and Find Full Text PDFNickel-catalyzed selective cross-coupling of aromatic electrophiles (bromides, chlorides, fluorides and methyl ethers) with organolithium reagents is presented. The use of a commercially available nickel N-heterocyclic carbene (NHC) complex allows the reaction with a variety of (hetero)aryllithium compounds, including those prepared via metal-halogen exchange or direct metallation, whereas a commercially available electron-rich nickel-bisphosphine complex smoothly converts alkyllithium species into the corresponding coupled product. These reactions proceed rapidly (1 h) under mild conditions (room temperature) while avoiding the undesired formation of reduced or homocoupled products.
View Article and Find Full Text PDFThe palladium-catalyzed direct cross-coupling of a range of organic chlorides and bromides with the bifunctional C(sp(3))-(trimethylsilyl)methyllithium reagent is reported. The use of Pd-PEPPSI-IPent as the catalyst allows for the preparation of structurally diverse and synthetically versatile benzyl- and allylsilanes in high yields under mild conditions (room temperature) with short reaction times.
View Article and Find Full Text PDFAn enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative Heck reaction at room temperature and a hydrazine-mediated organocatalysed reduction.
View Article and Find Full Text PDFPd(OAc)(2)/3 is an efficient catalyst system for the base-free oxidative Heck reaction that outperforms the currently available catalysts for the more challenging substrates studied. The catalyst system is highly selective, and works at room temperature with dioxygen as the oxidant.
View Article and Find Full Text PDF