In chickens, the nematode Ascaridia galli is found with prevalences of up to 100% causing economic losses to farmers. No avian nematode vaccines have yet been developed and detailed knowledge about the chicken immune response towards A. galli is therefore of great importance.
View Article and Find Full Text PDFIncreasingly large numbers of poultry are held in production systems with access to outdoor areas. In these systems intestinal helminths are found with flock prevalences of up to 100%. Helminth infections influence chicken health negatively, which is why the following investigation has been performed.
View Article and Find Full Text PDFThe scavenger receptor cysteine-rich superfamily (SRCR-SF) members are transmembrane and/or secreted receptors exhibiting one or several repeats of a cysteine-rich protein module of ∼100 aa, named scavenger receptor cysteine-rich (SRCR). Two types of SRCR domains (A or B) have been reported, which differ in the number of coding exons and intradomain cysteines. Although no unifying function has been reported for SRCR-SF members, recognition of pathogen-associated molecular patterns (PAMPs) was recently shown for some of them.
View Article and Find Full Text PDFThe members of the scavenger receptor cysteine-rich (SRCR) superfamily group B have diverse functions, including roles in the immune system. For years it has been known that the WC1 protein is expressed on the surface of bovine gammadelta T cells, and more recent studies indicate that WC1(+) gammadelta T cells respond to stimulation with bacterial antigens by producing interferon-gamma. The SRCR proteins CD5, CD6, Sp alpha, CD163, and DMBT1/gp-340 are also involved in the immune response, since they are pattern recognition receptors capable of binding directly to bacterial and/or fungal components.
View Article and Find Full Text PDFWe have cloned and characterized a novel murine transmembrane molecule, mSCART1 belonging to the scavenger receptor cysteine-rich superfamily. The cDNA encodes a polypeptide chain of 989 amino acids, organized as a type I transmembrane protein that contains eight extracellular SRCR domains followed by a transmembrane region and a cytoplasmic domain. The cytoplasmic domain contains two putative src kinase consensus substrate sequences, three additional potential phosphorylation sites, and two potential internalization motifs.
View Article and Find Full Text PDF