Publications by authors named "Dorte Meldrup"

Article Synopsis
  • Ostrea edulis, the European flat oyster, has experienced significant population declines over the past 200 years, prompting restoration efforts focused on restocking and conservation.
  • This study utilized whole-genome sequencing to identify seven distinct genetic clusters of the oyster, revealing complex population structures and signs of genetic mixing in Scandinavian regions.
  • The findings emphasize the need to understand genetic diversity and local adaptation for effective conservation strategies to restore native European flat oyster populations.
View Article and Find Full Text PDF

Targeted sequencing is an increasingly popular next-generation sequencing (NGS) approach for studying populations that involves focusing sequencing efforts on specific parts of the genome of a species of interest. Methodologies and tools for designing targeted baits are scarce but in high demand. Here, we present specific guidelines and considerations for designing capture sequencing experiments for population genetics for both neutral genomic regions and regions subject to selection.

View Article and Find Full Text PDF

The occurrence of natal homing in marine fish remains a fundamental question in fish ecology as its unequivocal demonstration requires tracking of individuals from fertilization to reproduction. Here, we provide evidence of long-distance natal homing (>1000 km) over more than 60 years in Atlantic cod (Gadus morhua), through genetic analysis of archived samples from marked and recaptured individuals. Using a high differentiation single-nucleotide polymorphism assay, we demonstrate that the vast majority of cod tagged in West Greenland and recaptured on Icelandic spawning grounds belonged to the Iceland offshore population, strongly supporting a hypothesis of homing.

View Article and Find Full Text PDF

Fishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s.

View Article and Find Full Text PDF

Accurate prediction of species distribution shifts in the face of climate change requires a sound understanding of population diversity and local adaptations. Previous modeling has suggested that global warming will lead to increased abundance of Atlantic cod (Gadus morhua) in the ocean around Greenland, but the dynamics of earlier abundance fluctuations are not well understood. We applied a retrospective spatiotemporal population genomics approach to examine the temporal stability of cod population structure in this region and to search for signatures of divergent selection over a 78-year period spanning major demographic changes.

View Article and Find Full Text PDF

Little is known about how quickly natural populations adapt to changes in their environment and how temporal and spatial variation in selection pressures interact to shape patterns of genetic diversity. We here address these issues with a series of genome scans in four overfished populations of Atlantic cod (Gadus morhua) studied over an 80-year period. Screening of >1000 gene-associated single-nucleotide polymorphisms (SNPs) identified 77 loci that showed highly elevated levels of differentiation, likely as an effect of directional selection, in either time, space or both.

View Article and Find Full Text PDF

Recent technological developments have facilitated intensified searches for genetic markers under selection in nonmodel species. Here, we present an approach for the identification of candidate gene variation in nonmodel organisms. We report on the characterization of 82 single nucleotide polymorphisms (SNPs) and on the development of a specific genotyping assay for 30 SNPs in 18 candidate genes for growth and reproduction in Atlantic cod (Gadus morhua).

View Article and Find Full Text PDF

Microsatellites have gained wide application for elucidating population structure in nonmodel organisms. Since they are generally noncoding, neutrality is assumed but rarely tested. In Atlantic cod (Gadus morhua L.

View Article and Find Full Text PDF

We examined polymorphism at seven microsatellite loci among sea trout (Salmo trutta) (n = 846) collected from three areas in the Limfjord (Denmark). We then assessed their potential population source by comparing, using a mixed stock analysis (MSA) Bayesian framework, their genetic composition to that of brown trout collected from 32 tributaries pooled into nine geographical regions (n = 3801) and two hatcheries (n = 222) used for stocking. For each of the three regional sea trout groups (western, central and eastern Limfjord, n = 91, n = 426, n = 329, respectively), MSA was conducted with (i) all individuals in the group, (ii) with the subset of spawning sea trout only and (iii) with the subset of foraging, nonspawning individuals only, a subset that consisted primarily of sea trout caught during their first year at sea.

View Article and Find Full Text PDF

Genetic population structure of turbot (Scophthalmus maximus L.) in the Northeast Atlantic was investigated using eight highly variable microsatellite loci. In total 706 individuals from eight locations with temporal replicates were assayed, covering an area from the French Bay of Biscay to the Aaland archipelago in the Baltic Sea.

View Article and Find Full Text PDF

The study of hybrid zones is central to our understanding of the genetic basis of reproductive isolation and speciation, yet very little is known about the extent and significance of hybrid zones in marine fishes. We examined the population structure of cod in the transition area between the North Sea and the Baltic Sea employing nine microsatellite loci. Genetic differentiation between the North Sea sample and the rest increased along a transect to the Baltic proper, with a large increase in level of differentiation occurring in the Western Baltic area.

View Article and Find Full Text PDF