Publications by authors named "Dorsa Parviz"

Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are of significant interest because of their unique photophysical properties, such as single-photon emission at room temperature, and promising applications in quantum computing and communications. The photoemission from hBN defects covers a wide range of emission energies but identifying and modulating the properties of specific emitters remain challenging due to uncontrolled formation of hBN defects. In this study, more than 2000 spectra are collected consisting of single, isolated zero-phonon lines (ZPLs) between 1.

View Article and Find Full Text PDF

Photocatalytic conversion of CO to generate high-value and renewable chemical fuels and feedstock presents a sustainable and renewable alternative to fossil fuels and petrochemicals. Currently, there is a dearth of kinetic understanding to inform better catalyst design, especially at uniform reaction conditions across diverse catalytic species. In this work, we investigate 12 active, stable, and unique but common nanoparticle photocatalysts for CO reduction at room temperature and low partial pressure in aqueous phase: TiO, SnO, and SiC deposited with silver, gold, and platinum.

View Article and Find Full Text PDF

Applications of reduced graphene oxide (rGO) in many different areas have been gradually increasing owing to its unique physicochemical characteristics, demanding more understanding of their biological impacts. Herein, we assessed the toxicological effects of rGO in mammary epithelial cells. Because the as-synthesized rGO was dissolved in sodium cholate to maintain a stable aqueous dispersion, we hypothesize that changing the cholate concentration in the dispersion may alter the surface property of rGO and subsequently affect its cellular toxicity.

View Article and Find Full Text PDF

Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material.

View Article and Find Full Text PDF

Background: Engineered nanomaterials (ENMs) have already made their way into myriad applications and products across multiple industries. However, the potential health risks of exposure to ENMs remain poorly understood. This is particularly true for the emerging class of ENMs know as 2-dimensional nanomaterials (2DNMs), with a thickness of one or a few layers of atoms arranged in a planar structure.

View Article and Find Full Text PDF

While facial coverings reduce the spread of SARS-CoV-2 by viral filtration, masks capable of viral inactivation by heating can provide a complementary method to limit transmission. Inspired by reverse-flow chemical reactors, we introduce a new virucidal face mask concept driven by the oscillatory flow of human breath. The governing heat and mass transport equations are solved to evaluate virus and CO transport.

View Article and Find Full Text PDF

Emerging, two-dimensional engineered nanomaterials (2DNMs) possess unique and diverse physical and chemical properties, such as extreme aspect ratios, adjustable electronic properties as well as functional lattice defects and surface chemistry which underpin their interactions with biological systems. This perspective highlights the need for structure activity relationship (SAR) studies for key properties of emerging grapheme-related and inorganic 2DNMs upon prioritization based on their potential impact and trajectory for large-scale production and applications. Further, it is discussed how a synthesis platform of microbiologically sterile, size-sorted, "model" 2DNMs with precise structure would enable SAR toxicological studies and allow for the sustainable and safe translation of 2D nanotechnology to real-world applications.

View Article and Find Full Text PDF

In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium.

View Article and Find Full Text PDF

Effective in silico methods to predict protein corona compositions on engineered nanomaterials (ENMs) could help elucidate the biological outcomes of ENMs in biosystems without the need for conducting lengthy experiments for corona characterization. However, the physicochemical properties of ENMs, used as the descriptors in current modeling methods, are insufficient to represent the complex interactions between ENMs and proteins. Herein, we utilized the fluorescence change (FC) from fluorescamine labeling on a protein, with or without the presence of the ENM, as a novel descriptor of the ENM to build machine learning models for corona formation.

View Article and Find Full Text PDF

Hypothesis: Self-assembled graphene hydrogels are notable in the field of electrochemical energy storage for their unique combination of excellent specific surface area, high porosity, and electrically conductive continuous network. However, graphene hydrogels suffer from poor mechanical integrity compared to layered architectures like graphene buckypapers, limiting their applications in practical devices. We propose the use of high strength, Kevlar®-derived polymeric nanofillers, aramid nanofibers (ANFs) as structural fillers to enhance graphene hydrogel's shear modulus in the context of multifunctional (mechanical and electrochemical) architectures.

View Article and Find Full Text PDF

The corona phase-the adsorbed layer of polymer, surfactant, or stabilizer molecules around a nanoparticle-is typically utilized to disperse nanoparticles into a solution or solid phase. However, this phase also controls molecular access to the nanoparticle surface, a property important for catalytic activity and sensor applications. Unfortunately, few methods can directly probe the structure of this corona phase, which is subcategorized as either a hard, immobile corona or a soft, transient corona in exchange with components in the bulk solution.

View Article and Find Full Text PDF

Colloidal dispersions of nanomaterials are often polydisperse in size, significantly complicating their characterization. This is particularly true for materials early in their historical development due to synthetic control, dispersion efficiency, and instability during storage. Because a wide range of system properties and technological applications depend on particle dimensions, it remains an important problem in nanotechnology to identify a method for the routine characterization of polydispersity in nanoparticle samples, especially changes over time.

View Article and Find Full Text PDF

Due to their two-dimensional structure and unique properties, graphene and its derivatives have been extensively studied for their potential applications in various fields ranging from electronics to composites. Particularly, their high surface area, electrical conductivity, mechanical strength, dispersability in aqueous phase, and possibility of surface modification make them promising candidates for biomedical applications including biosensing, drug delivery, tissue engineering, cell imaging, and therapeutics. The functioning of graphene nanosheets in these applications is dependent on their structure and properties, which are mainly determined by their preparation and processing methods.

View Article and Find Full Text PDF

Graphene oxide (GO)-based gels are attractive because of their ability to retain individual nanosheet properties in a three-dimensional (3D) bulk material. The final morphology and properties of these 3D gel networks depend strongly on the type and density of cross-links, and these gels can be dried and annealed to form aerogels with both high conductivity (560 S/m) and high surface area (1700 m/g). The results show that both ammonia content and the parent nanosheet morphology (crumpled vs flat) have a strong influence on the cross-linked structure and composition; notably, nitrogen is found in the gels, suggesting that ammonia actively participates in the reaction rather than as a mere catalyst.

View Article and Find Full Text PDF

We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene.

View Article and Find Full Text PDF

We describe the first preparation of polymer-supported pristine graphene thin films with dramatically different electrical conductivities on the top and bottom surfaces. Pyrene-functional stabilizers based on polystyrene or poly(methyl methacrylate) were first synthesized by copolymerization of their monomers with 1-pyrenemethyl methacrylate. Stable dispersions of pristine graphene nanosheets were prepared by sonication of graphite in chloroform solutions of the pyrene-functional copolymers.

View Article and Find Full Text PDF

Recent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non-oxidized graphene) are described.

View Article and Find Full Text PDF

Despite a range of promising applications, liquid-phase exfoliation of boron nitride nanosheets (BNNSs) is limited, both by low yield in common solvents as well as the disadvantages of using dissolved surfactants. One recently reported approach is the use of cosolvent systems to increase the as-obtained concentration of BNNS; the role of these solvents in aiding exfoliation and/or aiding colloidal stability of BNNSs is difficult to distinguish. In this paper, we have investigated the use of a t-butanol/water cosolvent to disperse BNNSs.

View Article and Find Full Text PDF

Here we demonstrate through experiment and simulation the polymer-assisted dispersion of inorganic 2D layered nanomaterials such as boron nitride nanosheets (BNNSs), molybdenum disulfide nanosheets (MoS2), and tungsten disulfide nanosheets (WS2), and we show that spray drying can be used to alter such nanosheets into a crumpled morphology. Our data indicate that polyvinylpyrrolidone (PVP) can act as a dispersant for the inorganic 2D layered nanomaterials in water and a range of organic solvents; the effectiveness of our dispersion process was characterized by UV-vis spectroscopy, microscopy and dynamic light scattering. Molecular dynamics simulations confirm that PVP readily physisorbs to BNNS surfaces.

View Article and Find Full Text PDF

We demonstrate three different techniques (dialysis, vacuum filtration, and spray drying) for removal of dispersants from liquid-exfoliated graphene. We evaluate these techniques for elimination of dispersants from both the bulk liquid phase and from the graphene surface. Thermogravimetric analysis (TGA) confirms dispersant removal by these treatments.

View Article and Find Full Text PDF

For the first time, pristine graphene can be controllably crumpled and unfolded. The mechanism for graphene is radically different than that observed for graphene oxide; a multifaced crumpled, dimpled particle morphology is seen for pristine graphene in contrast to the wrinkled, compressed surface of graphene oxide particles, showing that surface chemistry dictates nanosheet interactions during the crumpling process. The process demonstrated here utilizes a spray-drying technique to produce droplets of aqueous graphene dispersions and induce crumpling through rapid droplet evaporation.

View Article and Find Full Text PDF

A conductive polymer film containing pristine graphene was prepared by designing a polysiloxane-based stabilizer for graphene. The stabilizer was prepared by grafting 1-ethynylpyrene to the backbone of a poly(dimethylsiloxane)-co-(methylhydrosiloxane) (PDMS-PHMS) random copolymer by Pt-catalyzed hydrosilylation with a SiH-ethynyl ratio of 1.0 : 1.

View Article and Find Full Text PDF

We demonstrate that functionalized pyrene derivatives effectively stabilize single- and few-layer graphene flakes in aqueous dispersions. The graphene/stabilizer yield obtained by this method is exceptionally high relative to conventional nanomaterial stabilizers such as surfactants or polymers. The mechanism of stabilization by pyrene derivatives is investigated by studying the effects of various parameters on dispersed graphene concentration and stability; these parameters include stabilizer concentration, initial graphite concentration, solution pH, and type and number of functional groups and counterions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: