Publications by authors named "Dorrelyn Martin"

The fibroblast growth factor receptor (FGFR) signaling pathway is aberrantly activated in approximately 15% to 20% of patients with intrahepatic cholangiocarcinoma. Currently, several FGFR kinase inhibitors are being assessed in clinical trials for patients with FGFR-altered cholangiocarcinoma. Despite evidence of initial responses and disease control, virtually all patients eventually develop acquired resistance.

View Article and Find Full Text PDF

Cholangiocarcinoma is a highly aggressive and lethal malignancy, with limited treatment options available. Recently, FGFR inhibitors have been developed and utilized in FGFR-mutant cholangiocarcinoma; however, resistance often develops and the genomic determinants of resistance are not fully characterized. We completed whole-exome sequencing (WES) of 11 unique tumor samples obtained from a rapid research autopsy on a patient with FGFR-fusion-positive cholangiocarcinoma who initially responded to the pan-FGFR inhibitor, INCB054828.

View Article and Find Full Text PDF

Background: The fibroblast growth factor receptor (FGFR) signaling pathway is activated in multiple tumor types through gene amplifications, single base substitutions, or gene fusions. Multiple small molecule kinase inhibitors targeting FGFR are currently being evaluated in clinical trials for patients with FGFR chromosomal translocations. Patients with novel gene fusions involving FGFR may represent candidates for kinase inhibitors.

View Article and Find Full Text PDF

Interdigitating dendritic cell sarcoma (IDCS) is an extremely rare cancer of dendritic cell origin that lacks a standardized treatment approach. Here, we performed genomic characterization of metastatic IDCS through whole exome sequencing (WES) of tumor tissues procured from a patient who underwent research autopsy. WES was also performed on a treatment-naïve tumor biopsy sample obtained from prior surgical resection.

View Article and Find Full Text PDF

Multiplex somatic testing has emerged as a strategy to test patients with advanced cancer. We demonstrate our analytic validation approach for a gene hotspot panel and real-time prospective clinical application for any cancer type. The TruSight Tumor 26 assay amplifies 85 somatic hotspot regions across 26 genes.

View Article and Find Full Text PDF

Kinase gene fusions are important drivers of oncogenic transformation and can be inhibited with targeted therapies. Clinical grade diagnostics using RNA sequencing to detect gene rearrangements in solid tumors are limited, and the few that are available require prior knowledge of fusion break points. To address this, we have analytically validated a targeted RNA sequencing assay (OSU-SpARKFuse) for fusion detection that interrogates complete transcripts from 93 kinase and transcription factor genes.

View Article and Find Full Text PDF

RNA sequencing (RNAseq) is a versatile method that can be utilized to detect and characterize gene expression, mutations, gene fusions, and noncoding RNAs. Standard RNAseq requires 30 - 100 million sequencing reads and can include multiple RNA products such as mRNA and noncoding RNAs. We demonstrate how targeted RNAseq (capture) permits a focused study on selected RNA products using a desktop sequencer.

View Article and Find Full Text PDF

Signal transducer and activator of transcription (STAT) comprises a family of universal transcription factors that help cells sense and respond to environmental signals. STAT5 refers to two highly related proteins, STAT5A and STAT5B, with critical function: their complete deficiency is lethal in mice; in humans, STAT5B deficiency alone leads to endocrine and immunological problems, while STAT5A deficiency has not been reported. STAT5A and STAT5B show peptide sequence similarities greater than 90%, but subtle structural differences suggest possible non-redundant roles in gene regulation.

View Article and Find Full Text PDF