Scanning near-field optical microscopy was applied to study, with sub-wavelength spatial resolution, the near- and the far-field distributions of propagating modes from a high-power laser diode. Simple modeling was also performed and compared with experimental results. The simulated distributions were consistent with the experiment and permitted clarification of the configuration of the transverse modes of the laser.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2012
We investigate optical properties of a new complex plasmonic nanostructure, which consists of a spherical metallic nanoshell and a small metallic nanoparticle ("nanoknob") situated on its surface. The plasmon resonance wavelength of the entire structure is guided by the geometrical and material properties of the nanoshell whereas the electromagnetic field of the incident light is localized and enhanced near the "nanoknob". The idea is supported with electromagnetic modeling and near-field optical microscopy imaging.
View Article and Find Full Text PDFThe spatial resolution and high sensitivity of tip-enhanced Raman spectroscopy allows the characterization of surface features on a nano-scale. This technique is used to visualize silicon-based structures, which are similar in width to the transistor channels in present leading-edge CMOS devices. The reduction of the intensive far-field background signal is crucial for detecting the weak near-field contributions and requires beside a careful alignment of laser polarization and tip axis also the consideration of the crystalline sample orientation.
View Article and Find Full Text PDFTemperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi-walled C nanotube for precise temperature measurements.
View Article and Find Full Text PDFIntrinsic molecular fluorescence from porphyrin molecules on Au(100) has been realized by using a nanoscale multimonolayer decoupling approach with nanoprobe excitation in the tunneling regime. The molecular origin of luminescence is established by the observed well-defined vibrationally resolved fluorescence spectra. The molecules fluoresce at low "turn-on" voltages for both bias polarities, suggesting an excitation mechanism via hot electron injection from either tip or substrate.
View Article and Find Full Text PDFStatistical fluctuations of the magnetization are measured on the nanometer scale. As the experimental monitor we use the characteristic photoluminescence signal of a single electron-hole pair confined in one magnetic semiconductor quantum dot, which sensitively depends on the alignment of the magnetic ion spins. Quantitative access to statistical magnetic fluctuations is obtained by analyzing the linewidth broadening of the single dot emission.
View Article and Find Full Text PDF