Larval Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) were exposed to seven different entomopathogenic nematode species to test their potential infectivity in a laboratory setting. Known D. virgifera-infecting nematode species Heterorhabditis bacteriophora Poinar, Heterorhabditis megidis Poinar, Jackson & Klein, Steinernema feltiae Filipjev, and Steinernema carpocapsae Weiser were tested in a concerted experiment alongside Steinernema diaprepesi Nguyen & Duncan, Steinernema riobrave Cabanillas, Poinar & Raulston, and a Missouri wild-type H.
View Article and Find Full Text PDFMetal hyperaccumulation may be an elemental defense, in which high concentrations of a metal in plant tissues decrease herbivore survival or growth rate. The Joint Effects Hypothesis suggests that a combination of metals, or a combination of a metal with an organic compound, may have an enhanced defensive effect. The enhancement may be additive or synergistic: in either case the concentration of a particular metal necessary to provide a defensive benefit for the plant is lowered.
View Article and Find Full Text PDFIncreased metal availability in the environment can be detrimental for the growth and development of all organisms in a food web. In part, this toxicity is due to biotransfer or bioaccumulation of metals between trophic levels. We evaluated the survival, growth, and development of a generalist Hemipteran predator (Podisus maculiventris) when fed herbivorous prey (Spodoptera exigua) reared on artificial diet amended with Cu, Zn, Ni, and Co.
View Article and Find Full Text PDFElemental defense is a relatively newly recognized phenomenon in which plants use elements present in their tissue to reduce damage by herbivores or pathogens. In the present study, neonates of the generalist herbivore, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), were fed artificial diets amended with varying concentrations of Co, Cu, Ni, and Zn that are hyperaccumulated by plants to determine minimum lethal concentrations (MLC) and minimum sublethal concentrations (MSC) for each metal. MLC values (dry mass) for Co (45 μg/g), Ni (230 μg/g), and Zn (280 μg/g) were below published minimum hyperaccumulator levels.
View Article and Find Full Text PDF