Primary sclerosing cholangitis (PSC) is an immune-mediated liver disease of unknown pathogenesis, with a high risk to develop cirrhosis and malignancies. Functional dysregulation of T cells and association with genetic polymorphisms in T cell-related genes were previously reported for PSC. Here, we genotyped a representative PSC cohort for several disease-associated risk loci and identified rs56258221 (BACH2/MIR4464) to correlate with not only the peripheral blood T cell immunophenotype but also the functional capacities of naive CD4 T (CD4 T) cells in people with PSC.
View Article and Find Full Text PDFBackground And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis. We showed an elevated interferon γ response in patients with primary sclerosing cholangitis and in multidrug resistance protein 2-deficient ( Mdr2-/- ) mice developing sclerosing cholangitis. Interferon γ induced expression of the cytotoxic molecules granzyme B (GzmB) and TRAIL in hepatic lymphocytes and mediated liver fibrosis in sclerosing cholangitis.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2023
Background & Aims: The liver has a distinct capacity to induce immune tolerance to hepatic antigens. Although liver tolerance can be advantageous for preventing autoimmune and inflammatory diseases, it also can be detrimental by preventing immune surveillance of infected or malignant cells. Here, we investigated the immune mechanisms that establish hepatic tolerance.
View Article and Find Full Text PDFAccurately identifying γδ T cells in large single-cell RNA sequencing (scRNA-seq) datasets without additional single-cell γδ T cell receptor sequencing (sc-γδTCR-seq) or CITE-seq (cellular indexing of transcriptomes and epitopes sequencing) data remains challenging. In this study, we developed a TCR module scoring strategy for human γδ T cell identification (i.e.
View Article and Find Full Text PDFUnlabelled: Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont induces human IFNγ Th17 differentiation and IgG3 subclass switch of anti- RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis.
View Article and Find Full Text PDFPrimary sclerosing cholangitis (PSC) is an idiopathic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of intra- and extrahepatic bile ducts. Osteoporosis is a frequent comorbidity in PSC, and we could previously demonstrate that IL17-dependent activation of bone resorption is the predominant driver of bone loss in PSC. Since we additionally observed an unexpected heterogeneity of bone mineral density in our cohort of 238 PSC patients, the present study focused on a comparative analysis of affected individuals with diagnosed osteoporosis (PSC, n = 10) or high bone mass (PSC, n = 7).
View Article and Find Full Text PDFBackground: The immunogenicity of different COVID-19 vaccine regimens and combinations in naïve and convalescent individuals has not been formally tested in controlled studies, and real-life observational studies are scarce.
Methods: We assessed the SARS-CoV-2 infection and COVID-19 vaccination-induced immunity of 697 hospital workers at the University Medical Center Hamburg-Eppendorf between 17 and 31 January 2022.
Results: The overall prevalence of anti-NC-SARS-CoV-2 antibodies indicating prior infection was 9.
Background & Aims: Primary sclerosing cholangitis (PSC) is a progressive cholangiopathy characterised by fibrotic stricturing and inflammation of bile ducts, which seems to be driven by a maladaptive immune response to bile duct injury. The histological finding of dendritic cell expansion in portal fields of patients with PSC prompted us to investigate the role of dendritic cells in orchestrating the immune response to bile duct injury.
Methods: Dendritic cell numbers and subtypes were determined in different mouse models of cholangitis by flow cytometry based on lineage-imprinted markers.
Ambient temperature is an important determinant of both the alternative bile acid synthesis pathway controlled by oxysterol 7-α hydroxylase (CYP7B1) and the progression of metabolic-associated fatty liver disease (MAFLD). Here, we investigated whether CYP7B1 is involved in the etiology of MAFLD under conditions of low and high energy expenditure. For this, Cyp7b1 and wild type (WT) mice were fed a choline-deficient high-fat diet and housed either at 30 °C (thermoneutrality) or at 22 °C (mild cold).
View Article and Find Full Text PDFIn this longitudinal cohort study, we assessed the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) seroconversion rates and analyzed the coronavirus disease 2019 (COVID-19) vaccine-induced immunity of 872 hospital workers at the University Medical Center Hamburg-Eppendorf between May 11 and May 31, 2021. The overall seroprevalence of anti-NC-SARS-CoV-2 antibodies was 4.7% (n = 41), indicating low SARS-CoV-2 infection rates and persistent effectiveness of hospital-wide infection control interventions during the second and third wave of the pandemic.
View Article and Find Full Text PDFThe current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). A better understanding of its immunogenicity can be important for the development of improved diagnostics, therapeutics, and vaccines. Here, we report the longitudinal analysis of three COVID-19 patients with moderate (#1) and mild disease (#2 and #3).
View Article and Find Full Text PDFBackground & Aims: Little is known about the composition of intrahepatic immune cells and their contribution to the pathogenesis of primary sclerosing cholangitis (PSC). Herein, we aimed to create an atlas of intrahepatic T cells and thereby perform an in-depth characterization of T cells in inflamed human liver.
Methods: Different single-cell RNA sequencing methods were combined with in silico analyses on intrahepatic and peripheral T cells from patients with PSC (n = 11) and healthy donors (HDs, n = 4).
The liver is an immune-privileged organ that can deactivate autoreactive T cells. Yet in autoimmune hepatitis (AIH), autoreactive T cells can defy hepatic control and attack the liver. To elucidate how tolerance to self-antigens is lost during AIH pathogenesis, we generated a spontaneous mouse model of AIH, based on recognition of an MHC class II-restricted model peptide in hepatocytes by autoreactive CD4+ T cells.
View Article and Find Full Text PDFAutoimmune diseases are caused by adaptive immune responses to self-antigens. The development of antigen-specific therapies that suppress disease-related, but not unrelated immune responses in general, is an important goal of biomedical research. We have previously shown that delivery of myelin peptides to liver sinusoidal endothelial cells (LSECs) using LSEC-targeting nanoparticles provides effective protection from CD4 T-cell-driven autoimmune encephalomyelitis.
View Article and Find Full Text PDFWe sequentially assessed the presence of SARS-CoV-2 IgG antibodies in 1253 hospital workers including 1026 HCWs at the University Medical Center Hamburg-Eppendorf at three time points during the early phase of the epidemic. By the end of the study in July 2020, the overall seroprevalence was 1.8% (n = 22), indicating the overall effectiveness of infection control interventions in mitigating coronavirus disease 2019 (COVID-19) in hospital workers.
View Article and Find Full Text PDFBackground & Aims: IL-17A-producing T cells are present in autoimmune cholestatic liver diseases; however, little is known about the contribution of IL-17 to periductal immune responses. Herein, we investigated the role of IL-17 produced by antigen-specific CD8 T cells in a mouse model of cholangitis and in vitro in human cholangiocyte organoids.
Methods: K14-OVAp mice express a major histocompatibility complex I-restricted ovalbumin (OVA) peptide sequence (SIINFEKL) on cholangiocytes.
Background And Aims: T cells from patients with primary sclerosing cholangitis (PSC) show a prominent interleukin (IL)-17 response upon stimulation with bacteria or fungi, yet the reasons for this dominant T-helper 17 (Th17) response in PSC are not clear. Here, we analyzed the potential role of monocytes in microbial recognition and in skewing the T-cell response toward Th17.
Approach And Results: Monocytes and T cells from blood and livers of PSC patients and controls were analyzed ex vivo and in vitro using transwell experiments with cholangiocytes.
Background & Aims: Acetaminophen (APAP)-induced liver injury is one of the most common causes of acute liver failure, however, a clear definition of sensitizing risk factors is lacking. Here, we investigated the role of the ligand-activated transcription factor aryl hydrocarbon receptor (Ahr) in APAP-induced liver injury. We hypothesized that Ahr, which integrates environmental, dietary, microbial and metabolic signals into complex cellular transcriptional programs, might act as a rheostat for APAP-toxicity.
View Article and Find Full Text PDFThe immune system responds differently in women and in men. Generally speaking, adult females show stronger innate and adaptive immune responses than males. This results in lower risk of developing most of the infectious diseases and a better ability to clear viral infection in women (1-5).
View Article and Find Full Text PDFBackground & Aims: T cells are central mediators of liver inflammation and represent potential treatment targets in cholestatic liver disease. Whereas emerging evidence shows that bile acids (BAs) affect T cell function, the role of T cells for the regulation of BA metabolism is unknown. In order to understand this interplay, we investigated the influence of T cells on BA metabolism in a novel mouse model of cholangitis.
View Article and Find Full Text PDFBackground And Aims: Primary sclerosing cholangitis (PSC) is an idiopathic, chronic cholestatic liver disorder characterized by biliary inflammation and fibrosis. Increased numbers of intrahepatic interferon-γ- (IFNγ) producing lymphocytes have been documented in patients with PSC, yet their functional role remains to be determined.
Methods: Liver tissue samples were collected from patients with PSC.
Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner.
View Article and Find Full Text PDFBackground & Aims: Osteoporotic fractures are a major cause of morbidity and reduced quality of life in patients with primary sclerosing cholangitis (PSC), a progressive bile duct disease of unknown origin. Although it is generally assumed that this pathology is a consequence of impaired calcium homeostasis and malabsorption, the cellular and molecular causes of PSC-associated osteoporosis are unknown.
Methods: We determined bone mineral density by dual-X-ray absorptiometry and assessed bone microstructure by high-resolution peripheral quantitative computed tomography in patients with PSC.
Autoimmune diseases are a broad range of diseases in which the immune system produces an inappropriate response to self-antigens. This results in inflammation, damage, or dysfunction of tissues and/or organs. Many autoimmune diseases are more common in women and differences between female and male immune and autoimmune responses have been well documented.
View Article and Find Full Text PDF