Publications by authors named "Dorothee Schaffner"

We report vibrationally resolved threshold photoelectron spectra of several sulfur-containing reactive intermediates. This includes the organosulfur radicals CHS, CHS, CHSH, CHS, and SH, which are relevant in atmospheric chemistry and in astrochemical settings. Due to the high reactivity, the radicals were prepared pyrolysis of (CH)S.

View Article and Find Full Text PDF

We investigate isothiocyanic acid, HNCS, by resonant and nonresonant Auger electron spectroscopy at the K-edge of carbon and nitrogen, and the L-edge of sulfur, employing soft X-ray synchrotron radiation. The C1s and N1s ionization energies as well as the S2s and S2p ionization energies are determined and X-ray absorption spectra reveal the transitions from the core to the virtual orbitals. Final states for all normal Auger electron spectra and the resonant ones recorded at the carbon and nitrogen edge are assigned and rationalized with theoretical spectra obtained with a wave-function based protocol.

View Article and Find Full Text PDF

We report the x-ray absorption spectrum (XAS) of the tert-butyl radical, C4H9. The radical was generated pyrolytically from azo-tert-butane, and the XAS of the pure radical was obtained by subtraction of spectra recorded at different temperatures. The bands in the XAS were assigned by ab initio calculations that are in very good agreement with the experimental data.

View Article and Find Full Text PDF

The fragmentation of fulminic acid, HCNO, after excitation and ionization of core electrons was investigated using Auger-electron-photoion coincidence spectroscopy. A considerable degree of site-selectivity is observed. Ionization of the carbon and oxygen 1s electron leads to around 70% CH+ + NO+, while ionization at the central N-atom produces only 37% CH+ + NO+, but preferentially forms O+ + HCN+ and O+ + CN+.

View Article and Find Full Text PDF

Trimethylborane (TMB) and its chemistry upon pyrolysis have been investigated by threshold photoelectron spectroscopy. TMB shows an unstructured spectrum and its adiabatic ionization energy (IE) has been determined to be 9.93 ± 0.

View Article and Find Full Text PDF

We have investigated the photoionization of ammonia borane (AB) and determined adiabatic ionization energy to be 9.26±0.03 eV for the X E←X A transition.

View Article and Find Full Text PDF

We report the mass-selected threshold photoelectron spectrum (ms-TPES) of iminoborane (HBNH), generated by pyrolysis of borazine. The adiabatic ionization energy (IE) of the XΠ ← X Σ transition was determined to be 11.31 ± 0.

View Article and Find Full Text PDF