In contrast to common ferroelectric smectic C* liquid crystals, the siloxane-terminated smectic mesogen E6 is characterized by an unusual temperature variation of the spontaneous polarization. The polarization starts to grow from nearly zero despite the first-order SmA*-SmC* transition, and increases faster than linearly over a large temperature interval while the tilt angle rapidly saturates. To study this behavior in more detail, binary mixtures of different concentrations of E6 in the achiral SmC material C8Cl, which has a similar chemical structure, were investigated.
View Article and Find Full Text PDFOn the basis of thorough analysis of 2D X-ray diffraction patterns from smectic monodomains, we examine the influence of orientational fluctuations on the weakly first-order smectic A (SmA) to smectic C (SmC) transitions in two nonchiral organosiloxane "de Vries"-type liquid crystals. We find that these materials exhibit very large molecular tilt fluctuations with magnitudes of up to 35°--thus larger than the average tilt itself. This is essential to understand the underlying molecular mechanism behind the practical absence of smectic layer contraction in these materials: in the SmA phase, the nematic order parameter is very low (molecular fluctuations correspondingly high), and the expected layer shrinkage at the SmA to SmC transition is almost fully compensated by the increase in orientational order, as the fluctuations diminish with decreasing temperature.
View Article and Find Full Text PDFSmectic liquid crystals with 'de Vries-like' properties are characterized by a maximum layer contraction of ≤1% upon transition from the non-tilted SmA phase to the tilted SmC phase. We show herein that one can systematically increase the 'de Vries-like' character of a smectic liquid crystal by tuning the frustration between SmA- and SmC-promoting elements according to established structure-property relationships.
View Article and Find Full Text PDFIn this article, we present the synthesis of highly shape-anisotropic, micrometer-sized particles from liquid crystalline elastomers, which have the ability to reversibly change their shape in response to a certain external stimulus. For their preparation, we utilized a microfluidic setup. We succeeded in preparing sets of particles with differing degrees of shape anisotropy in their ground state including highly anisotropic fiber-like objects.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2010
Two nanosegregating siloxane-terminated mesogens with chiral (S,S)-2,3-epoxyoctyloxy side chains (E6, E11) have been synthesized. These compounds form chiral SmA∗ and SmC∗ phases and show an untypical behavior of the spontaneous polarization which increases with decreasing temperature in a convex manner while the tilt angle saturates. We compare these results with results obtained for two similar mesogens with chiral (R,R)-2,3-difluorooctyloxy side chains (F6, F11), which both show a typical concave curvature with decreasing temperature.
View Article and Find Full Text PDFAccording to a new design strategy for "de Vries-like" liquid crystal materials, which are characterized by a maximum layer contraction of < or = 1% upon transition from the SmA phase to the SmC phase, we report the synthesis and characterization of two homologous series of organosiloxane mesogens. The design of these new materials is based on a frustration between one structural element that promotes the formation of a SmC phase (a trisiloxane-terminated side-chain) and one that promotes the formation of a SmA phase (either a chloro-terminated side-chain or a 5-phenylpyrimidine core). Measurements of smectic layer spacing d as a function of temperature by small-angle X-ray scattering (SAXS) combined with optical tilt angle measurements revealed that the mesogens 5-(4-(11-(1,1,1,3,3,5,5-heptamethyltrisiloxanyl)-undecyloxy)phenyl)-2-(1-alkyloxy)pyrimidine (3(n)) undergo SmA-SmC phase transitions with maximum layer contractions ranging from 0.
View Article and Find Full Text PDF