Horses with recurrent airway obstruction (RAO) present many similarities with human asthmatics including airway inflammation, hyperresponsiveness, reversible obstruction, and increased NF-kappaB expression. Studies in experimental asthma models have shown that transcriptions factors such as activator protein-1 (AP-1), GATA-3, cyclic AMP response element binding protein (CREB) and CAAT/enhancer binding protein (C/EBP) may also play an important role in airway inflammation. The purpose of this study was to measure DNA binding activity of these transcription factors in the airways of horses with RAO and to compare it to pulmonary function and bronchoalveolar lavage fluid (BALF) cytology.
View Article and Find Full Text PDFGlucocorticoid (GC) therapy is recognized to be effective for the treatment of recurrent airway obstruction (RAO) in horses. Anti-inflammatory properties of GC are thought to be mediated by suppression of inflammatory gene expression via inhibition of transcription factors such as nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1). The purpose of this study was to evaluate the effect of low-dose inhaled beclomethasone dipropionate and injectable dexamethasone 21-isonicotinate on clinical signs, pulmonary function, airway cytology, and activity of NF-kappaB and AP-1 in bronchial cells of RAO-affected horses.
View Article and Find Full Text PDFAm J Respir Crit Care Med
September 2005
Rationale: Asthma is associated with increased expression of a typical array of genes involved in immune and inflammatory responses, including those encoding the prototypic Th2 cytokines interleukin (IL) 4, IL-5, and IL-13. Most of these genes contain binding sites for activator protein-1 (AP-1) within their promoter and are therefore believed to depend on AP-1 for their expression, suggesting that this transcription factor could be of particular importance in asthma pathophysiology.
Objective: To clarify the role of AP-1 in the effector phase of pulmonary allergy.
Thiazolidinediones (TZDs) are pharmacological ligands of the peroxisome proliferator-activated receptor (PPAR)-gamma that are extensively used in the treatment of type II diabetes. Recently, an anti-inflammatory potential for TZDs has been suggested, based on observations that these compounds may inhibit pro-inflammatory cytokine expression in vitro and may attenuate the inflammatory response in vivo. Here, we show that the TZDs rosiglitazone (RSG) and troglitazone (TRO) do not inhibit the inflammatory response to tumor necrosis factor (TNF)-alpha in various epithelial cell types.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2004
Heat shock transcription factor (HSF)-1 is recognized as a central component of the heat shock response, which protects against various harmful conditions. However, the mechanisms underlying the protection and the role of HSF-1 in these mechanisms have not yet been clearly elucidated. Using HSF-1 knockout mice (Hsf1(-/-)), we examined whether heat shock response-mediated lung protection involved an inhibition of the proinflammatory pathway via an interaction between HSF-1 and NF-kappaB, in response to cadmium insult.
View Article and Find Full Text PDFAn anti-inflammatory role and therapeutic potential for cyclopentenone PGs (cyPGs) has been suggested, based on observations that levels of cyPGs in exudates increase during the resolution phase of inflammation, and that exogenous cyPGs may attenuate the inflammatory response in vivo and in vitro mainly through inhibition of NF-kappaB, a critical activator of inflammatory gene expression. However, exogenous cyPGs inhibit NF-kappaB only at concentrations substantially higher than those of endogenous cyPGs present in inflammatory fluids, thus challenging the hypothesis that cyPGs are naturally occurring inhibitors of inflammation and suggesting that cyPGs at low concentrations might have previously unappreciated effects. In this study, using various cell types, we report that cyPGs, when used at concentrations substantially lower than required for NF-kappaB inhibition (viz, low micromolar concentrations), significantly potentiate the inflammatory response to TNF-alpha.
View Article and Find Full Text PDF