The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand cross-links (ICLs) or replication stress.
View Article and Find Full Text PDFBackground And Purpose: About 5-10% of all breast cancer cases are associated with heterozygous germ-line mutations in the genes encoding BRCA1 and BRCA2. Carriers of such mutations are highly predisposed for developing breast or ovarian cancer and, thus, are advised to undergo regular radio-diagnostic examinations. BRCA1 and BRCA2 are involved in multiple cellular processes including the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) and different studies addressing the DSB repair capacity of BRCA1+/- or BRCA2+/- cells led to contradictory results.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
August 2011
The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations.
View Article and Find Full Text PDFIt has been proposed that the G(1)-S checkpoint is the critical regulator of genomic stability, preventing the cell cycle progression of cells with a single DNA double-strand break. Using fluorescence-activated cell sorting analysis of asynchronous cells and microscopic analysis of asynchronous and synchronized cells, we show that full blockage of S-phase entry is only observed >4 hours after irradiation. The process is ataxia-telangiectasia mutated (ATM) dependent and Chk1/2 independent and can be activated throughout G(1) phase.
View Article and Find Full Text PDFATM-dependent initiation of the radiation-induced G(2)/M checkpoint arrest is well established. Recent results have shown that the majority of DNA double-strand breaks (DSBs) in G(2) phase are repaired by DNA nonhomologous end joining (NHEJ), while approximately 15% of DSBs are slowly repaired by homologous recombination. Here, we evaluate how the G(2)/M checkpoint is maintained in irradiated G(2) cells, in light of our current understanding of G(2) phase DSB repair.
View Article and Find Full Text PDFAtaxia Telangiectasia Mutated (ATM) signaling is essential for the repair of a subset of DNA double-strand breaks (DSBs); however, its precise role is unclear. Here, we show that < or =25% of DSBs require ATM signaling for repair, and this percentage correlates with increased chromatin but not damage complexity. Importantly, we demonstrate that heterochromatic DSBs are generally repaired more slowly than euchromatic DSBs, and ATM signaling is specifically required for DSB repair within heterochromatin.
View Article and Find Full Text PDFDNA double strand break (DSB) repair and checkpoint control represent two major mechanisms that function to reduce chromosomal instability following ionizing irradiation (IR). Ataxia telangiectasia (A-T) cells have long been known to have defective checkpoint responses. Recent studies have shown that they also have a DSB repair defect following IR raising the issue of how ATM's repair and checkpoint functions interplay to maintain chromosomal stability.
View Article and Find Full Text PDFDNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions.
View Article and Find Full Text PDF