Although the longitudinal visceral muscles have been shown to undergo major morphological changes during the transition from larval to adult gut musculature, there have been conflicting views as to whether these muscles persist as such during metamorphosis or whether they are built anew (Klapper 2000; Aghajanian et al. 2016). Here we present our independent analysis using as a cell type specific marker, which strengthens the proposition by Aghajanian et al.
View Article and Find Full Text PDFNumerous cell functions are accompanied by phenotypic changes in viscoelastic properties, and measuring them can help elucidate higher level cellular functions in health and disease. We present a high-throughput, simple and low-cost microfluidic method for quantitatively measuring the elastic (storage) and viscous (loss) modulus of individual cells. Cells are suspended in a high-viscosity fluid and are pumped with high pressure through a 5.
View Article and Find Full Text PDFBackground: Most of the known genes required for developmental processes have been identified by genetic screens in a few well-studied model organisms, which have been considered representative of related species, and informative-to some degree-for human biology. The fruit fly Drosophila melanogaster is a prime model for insect genetics, and while conservation of many gene functions has been observed among bilaterian animals, a plethora of data show evolutionary divergence of gene function among more closely-related groups, such as within the insects. A quantification of conservation versus divergence of gene functions has been missing, without which it is unclear how representative data from model systems actually are.
View Article and Find Full Text PDFBackground: Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype.
Methods: We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation.
Background: Mutations in the human desmin gene (DES) cause autosomal-dominant and -recessive cardiomyopathies, leading to heart failure, arrhythmias, and AV blocks. We analyzed the effects of vascular pressure overload in a patient-mimicking p.R349P desmin knock-in mouse model that harbors the orthologue of the frequent human DES missense mutation p.
View Article and Find Full Text PDFIn a large-scale RNAi screen in for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the ortholog of , which encodes an F-BAR and SH3 domain protein.
View Article and Find Full Text PDFAlthough muscle development has been widely studied in there are still many gaps in our knowledge, and it is not known to which extent this knowledge can be transferred to other insects. To help in closing these gaps we participated in a large-scale RNAi screen that used the red flour beetle, , as a screening platform. The effects of systemic RNAi were screened upon double-stranded RNA injections into appropriate muscle-EGFP tester strains.
View Article and Find Full Text PDFBackground: Stem cells are undifferentiated cells with a potential for self-renewal, which are essential to support normal development and homeostasis. To gain insight into the molecular mechanisms underlying adult stem cell biology and organ evolution, we use the telotrophic ovary of the beetle To this end, we participated in a large-scale RNAi screen in the red flour beetle , which identified functions in embryonic and postembryonic development for more than half of the genes.
Results: We identified as candidate gene for the follicle stem cell linage in telotrophic oogenesis.
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub).
View Article and Find Full Text PDFBackground: Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death.
View Article and Find Full Text PDFGenetic screens are powerful tools to identify the genes required for a given biological process. However, for technical reasons, comprehensive screens have been restricted to very few model organisms. Therefore, although deep sequencing is revealing the genes of ever more insect species, the functional studies predominantly focus on candidate genes previously identified in Drosophila, which is biasing research towards conserved gene functions.
View Article and Find Full Text PDF