Injections are one way of delivering drugs directly to the joint capsule. Employing this possibility, local anesthetic, such as bupivacaine (Bu), in the form of the suspension can be administered. The aim of this work was to propose a methylcellulose-based hydrogel-incorporated bupivacaine for intra-articular injections and to study the release kinetics of the drug from the hydrogel to different acceptor media, reflecting the synovial fluid of a healthy joint and the synovial fluid of an inflamed joint.
View Article and Find Full Text PDFSodium hyaluronate (HA) is a natural polysaccharide. This biopolymer occurs in many tissues of living organisms. The regenerating, nourishing, and moisturizing properties as well as the rheological properties of HA enable its application in the pharmaceutical industry as a carrier of medicinal substances.
View Article and Find Full Text PDFThe properties of sodium hyaluronate (HA), such as hygroscopicity, flexibility, the ability to form hydrogels, as well as biocompatibility and biodegradability, are beneficial for the applications in pharmaceutical technology, cosmetics industry, and aesthetic medicine. The aim of this study was to prepare HA-based hydrogels doped with active pharmaceutical ingredient (API): a cationic drug-lidocaine hydrochloride or anionic drug-sodium. The interaction between the carrier and the implemented active pharmaceutical substances was evaluated in prepared systems by applying viscometric measurements, performing release tests of the drug from the obtained formulations, and carrying out FTIR and DSC.
View Article and Find Full Text PDFHyaluronan is a natural polymer that was introduced to wound therapy. Formulations based on synthetic polymers such as methylcellulose (MC) and polyacrylic acid (PA) containing hyaluronan (HA) were proposed for the development of prospective wound-healing preparations. The formulations of different carrier concentrations containing a fixed amount of HA were prepared, and their viscosity was measured.
View Article and Find Full Text PDFThe industrial polymeric carriers for peroral mesalazine application exploit, i.a., cellulose or polyacrylic acid derivatives, polyvinylpyrrolidone, and modified starch.
View Article and Find Full Text PDFTargeted drug delivery systems are a very convenient method of treating inflammatory bowel disease. The properties of pectin make this biopolymer a suitable drug carrier. These properties allow pectin to overcome the diverse environment of the digestive tract and deliver the drug to the large intestine.
View Article and Find Full Text PDFImplants are readily applied as a convenient method of therapy. There is great interest in the prolonged release of active substances from implants. The objective of this work was to evaluate the dissolution kinetics of steroidal anti-inflammatory preparation (SAP) released from novel implants, and to test the influence of the technology on SAP release kinetics.
View Article and Find Full Text PDFAbstract: Tablets are often used in splitting process when the appropriated, registered dose is not available on the market or patients exhibit swallowing difficulties caused by the size of the tablet. The aim of the work was to assess the impact of physical division of tablets on the kinetics of in vitro gliclazide release from the intact and divided tablets. Gliclazide was released from prolonged release tablets containing 30 or 60 mg of the drug into a phosphate buffer, pH 7.
View Article and Find Full Text PDFBackground: Gastric residence time is the key factor affecting the bioavailability of active pharmaceutical ingredients absorbed mainly through the gastric mucous membrane and influencing the local activity of some drugs.
Objectives: The aim of this study was the development of a new composition of non-effervescent floating tablets and the evaluation of the effect of an anionic polymer and compressive force on the floating properties and release characteristics of tablets containing a model alkaline drug, chlorhexidine (CHX).
Material And Methods: Direct compression was applied to a polyacrylic acid derivative and sorbitol to fabricate the tablets.
Ab initio calculations at the G2 level were used in a theoretical analysis of the kinetics of unimolecular and water-accelerated decomposition of the halogenated alcohols CX(3)OH (X = F, Cl, and Br) into CX(2)O and HX. The calculations show that reactions of the unimolecular decomposition of CX(3)OH are of no importance under atmospheric conditions. A considerably lower energy pathway for the decomposition of CX(3)OH is accessible by homogenous reactions between CX(3)OH and water.
View Article and Find Full Text PDFThe kinetics of the CH2I + NO2, CH2Br + NO2, and CHBrCl + NO2 reactions have been studied at temperatures between 220 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time-resolved measurements to obtain reaction rate coefficients under pseudo-first-order conditions. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (2-6 Torr) and are found to depend on temperature as follows: k(CH2I + NO2) = (2.
View Article and Find Full Text PDFThe kinetics of the reactions of CH2Br and CH2I radicals with O2 have been studied in direct measurements using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated by pulsed laser photolysis of appropriate precursors at 193 or 248 nm. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of O2 being in large excess over radical concentrations.
View Article and Find Full Text PDF