Publications by authors named "Dorota Wencel"

There is a constant need to improve patient comfort and product performance associated with the use of medical devices. Efforts to optimise the tribological characteristics of medical devices usually involve modifying existing devices without compromising their main design features and functionality. This article constitutes a state-of-the-art review of the influence of dry friction on polymeric components used in medical devices, including those having microscale surface features.

View Article and Find Full Text PDF

This article reports on a fiber-based ratiometric optical pH sensor for use in real-time and continuous in vivo pH monitoring in human tissue. Stable hybrid sol-gel-based pH sensing material is deposited on a highly flexible plastic optical fiber tip and integrated with excitation and detection electronics. The sensor is extensively tested in a laboratory environment before it is applied in vivo in a human model.

View Article and Find Full Text PDF

The focus of this work is on the development and characterisation of a fluorescence-based ratiometric sol-gel-derived dissolved carbon dioxide (dCO(2)) sensor for use in environmental monitoring applications. Fluorescence-based dCO(2) sensors are attractive as they facilitate the development of portable and low-cost systems that can be easily deployed outside the laboratory environment. The sensor developed for this work exploits a pH fluorescent dye 1-hydroxypyrene-3,6,8-trisulfonic acid, ion-paired with cetyltrimethylammonium bromide (HPTS-IP), which has been entrapped in a hybrid sol-gel-based matrix derived from n-propyltriethoxysilane along with the liphophilic organic base.

View Article and Find Full Text PDF

This paper describes the fabrication and performance of a range of highly sensitive luminescence-based oxygen sensor films based on the fluorinated sol-gel precursor 3,3,3-trifluoropropyltrimethoxysilane (TFP-TMOS). The oxygen-sensitive ruthenium complex [Ruthenium(II)-tris(4,7-diphenyl-1,10-phenanthroline)] dichloride, [Ru(dpp)(3)](2+) was entrapped in a wide range of ORMOSILs (organically modified silicates) matrices composed of alkyl and TFP-TMOS sol-gel precursors in different relative ratios. The influence of TFP-TMOS on sensor sensitivity, humidity-sensitivity and long-term stability was investigated and performance was compared to that of similar but non-fluorinated films.

View Article and Find Full Text PDF

Food intake and Body Mass Index (BMI) as basic indicator of nourishment of adolescents from a little town in Wielkopolska were evaluated. Triple 24 hour recall was conducted in group of 30 girls and 30 boys 13 years old. Quality and quantity of food rations consumed was evaluated.

View Article and Find Full Text PDF

We report on the development of a novel optical oxygen sensor for breath monitoring applications using the technique of phase fluorometry. The principal design criteria are that the system be compact, lightweight, and employ a disposable sensing element (while performing competitively with current commercial analyzers). The oxygen-sensitive, luminescent ruthenium complex Ru[dpp](3)(2+) is encapsulated in a sol-gel matrix and deposited onto a custom-designed, polymer sensor chip that provides significantly improved luminescence capture efficiency.

View Article and Find Full Text PDF

This study focuses on the optimisation and characterisation of novel, ORganically MOdified SILicate (ORMOSIL)-based, hybrid sensor films for use in the detection of O(2) on a breath-by-breath basis in human health monitoring applications. The sensing principle is based on the luminescence quenching of the O(2)-sensitive ruthenium complex [Ru(ii)-tris(4,7-diphenyl-1,10-phenanthroline)], which has been entrapped in a porous sol-gel film. The detection method employed is that of phase fluorometry using blue LED excitation and photodiode detection.

View Article and Find Full Text PDF