Cardiovascular diseases are the leading cause of death globally, making the development of non-invasive and simple-to-use tools that bring insights into the state of the cardiovascular system of utmost importance. We investigated the possibility of using peripheral pulse wave recordings to estimate stroke volume (SV) and subject-specific parameters describing the selected properties of the cardiovascular system. Peripheral pressure waveforms were recorded in the radial artery using applanation tonometry (SphygmoCor) in 35 hemodialysis (HD) patients and 14 healthy subjects.
View Article and Find Full Text PDFBackground: The mechanism of acute brain injury initiates a cascade of consequences which can directly cause lung damage, and this can contribute to poor neurological outcomes. The aim of this study was to evaluate concentration of different apoptotic molecules in the bronchoalveolar lavage fluid (BALF) in patients after severe brain injury and to correlate them with selected clinical variables and mortality.
Methods: Patients with brain injury receiving BALF operation were included in the study.
Organism survival depends on oxygen delivery and utilization to maintain the balance of energy and toxic oxidants production. This regulation is crucial to the brain, especially after acute injuries. Secondary insults after brain damage may include impaired cerebral metabolism, ischemia, intracranial hypertension and oxygen concentration disturbances such as hypoxia or hyperoxia.
View Article and Find Full Text PDFBackground: The systemic inflammatory response following severe COVID-19 is associated with poor outcomes. Several anti-inflammatory medications have been studied in COVID-19 patients. Xanthohumol (Xn), a natural extract from hop cones, possesses strong anti-inflammatory and antioxidative properties.
View Article and Find Full Text PDFBrain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain-heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death.
View Article and Find Full Text PDFObjective: The interaction between the brain and lungs has been the subject of many clinical reports, while the exact impact of brain injury on the physiology of the respiratory system is still subject to numerous experimental studies. The purpose of this study was to investigate the activation of selected caspases levels in bronchoalveolar lavage fluid (mini BALF) of patients after isolated brain injury and their correlation with the severity of the injury.
Methods: The analysis was performed on patients who were admitted to the intensive care unit (ICU) for severe isolated brain injury from March 2018 to April 2020.
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however, cells infiltrate within 5 min of closed brain injury.
View Article and Find Full Text PDFIntroduction: Disorders in electroencephalography (EEG) are commonly noted in patients with traumatic brain injury (TBI) and may be associated with electrocardiographic disturbances. Electrographic seizures (ESz) are the most common features in these patients. This study aimed to explore the relationship between ESz and possible changes in QTc interval and spatial QRS-T angle both during ESz and after ESz resolution.
View Article and Find Full Text PDFAnaesthesiol Intensive Ther
March 2022
In recent years commensal microorganisms are not just "passive occupants", but important element of homeostasis. There are numerous reports documenting the composition and role of the gut, skin or vagina microbiome but the role of commensal orga-nisms living in the lungs is relatively unknown. Pulmonary microbiome impact on the immune response of the host organism and may indicate new therapeutic directions.
View Article and Find Full Text PDFHyperosmotic therapy is commonly used to treat intracranial hypertension in traumatic brain injury patients. Unfortunately, hyperosmolality also affects other organs. An increase in plasma osmolality may impair kidney, cardiac, and immune function, and increase blood-brain barrier permeability.
View Article and Find Full Text PDFMeasurement of cerebral oximetry by near-infrared spectroscopy provides continuous and non-invasive information about the oxygen saturation of haemoglobin in the central nervous system. This is especially important in the case of patients with traumatic brain injuries. Monitoring of cerebral oximetry in these patients could allow for the diagnosis of inadequate cerebral oxygenation caused by disturbances in cerebral blood flow.
View Article and Find Full Text PDFBest Pract Res Clin Anaesthesiol
July 2021
Neuropatients often require invasive mechanical ventilation (MV). Ideal ventilator settings and respiratory targets in neuro patients are unclear. Current knowledge suggests maintaining protective tidal volumes of 6-8 ml/kg of predicted body weight in neuropatients.
View Article and Find Full Text PDFPurpose: To assess whether the combination of intra-abdominal hypertension (IAH, intra-abdominal pressure ≥ 12 mmHg) and hypoxic respiratory failure (HRF, PaO2/FiO2 ratio < 300 mmHg) in patients receiving invasive ventilation is an independent risk factor for 90- and 28-day mortality as well as ICU- and ventilation-free days.
Methods: Mechanically ventilated patients who had blood gas analyses performed and intra-abdominal pressure measured, were included from a prospective cohort. Subgroups were defined by the absence (Group 1) or the presence of either IAH (Group 2) or HRF (Group 3) or both (Group 4).
Traumatic brain injury (TBI) is a major cause of disability and death worldwide. The initial mechanical insult results in tissue and vascular disruption with hemorrhages and cellular necrosis that is followed by dynamic secondary brain damage that presumably results in additional destruction of the brain. In order to minimize deleterious consequences of the secondary brain damage- such as inflammation, bleeding or reduced oxygen supply.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is often associated with cardiac dysfunction, which is a consequence of the brain-heart cross talk. The subendocardial viability ratio (SEVR) is an estimate of myocardial perfusion. The aim of this study was to analyze changes in the SEVR in patients with severe TBI without previous cardiac diseases.
View Article and Find Full Text PDFRecent studies have reported that commensal microorganisms are not just "passive occupants" but may play a crucial role in the immune system activation. It is well-known that in critically ill patients, the microbiome is modified and may be associated with the development of immunosuppression in sepsis, contributing to the development of acute renal injury, cardiovascular diseases, or more importantly, respiratory system disturbances. The conviction of lung sterility has gone down in history.
View Article and Find Full Text PDFPost cardiac arrest syndrome is associated with high morbidity and mortality, which is related not only to a poor neurological outcome but also to respiratory and cardiovascular dysfunctions. The control of gas exchange, and in particular oxygenation and carbon dioxide levels, is fundamental in mechanically ventilated patients after resuscitation, as arterial blood gases derangement might have important effects on the cerebral blood flow and systemic physiology.In particular, the pathophysiological role of carbon dioxide (CO) levels is strongly underestimated, as its alterations quickly affect also the changes of intracellular pH, and consequently influence metabolic energy and oxygen demand.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2020
Background: Traumatic brain injury (TBI) is commonly associated with cardiac dysfunction, which may be reflected by abnormal electrocardiograms (ECG) and/or contractility. TBI-related cardiac disorders depend on the type of cerebral injury, the region of brain damage and the severity of the intracranial hypertension. Decompressive craniectomy (DC) is commonly used to reduce intra-cranial hypertension (ICH).
View Article and Find Full Text PDFA traumatic brain injury (TBI) initiates an inflammatory response with molecular cascades triggered by the presence of necrotic debris, including damaged myelin, hemorrhages and injured neuronal cells. Molecular cascades prominent in TBI-induced inflammation include the release of an excess of proinflammatory cytokines and angiogenic factors, the degradation of tight junctions (TJs), cytoskeletal rearrangements and leukocyte and protein extravasation promoted by increased expression of adhesion molecules. The brain-gut axis consists of a complex network involving neuroendocrine and immunological signaling pathways and bi-directional neural mechanisms.
View Article and Find Full Text PDFSpinal cord injury (SCI) initiates a severe, destructive inflammation with pro-inflammatory, CD68+/CD163-, phagocytic macrophages infiltrating the area of necrosis and hemorrhage by day 3 and persisting for the next 16 weeks. Inhibition of macrophage infiltration of the site of necrosis that is converted into a cavity of injury (COI) during the first week post-SCI, should limit inflammatory damage, shorten its duration and result in neuroprotection. By sustained subdural infusion we administered Serp-1, a Myxoma virus-derived immunomodulatory protein previously shown to improve neurologic deficits and inhibit macrophage infiltration in the COI in rats with the balloon crush SCI.
View Article and Find Full Text PDFDelirium, an acute alteration in mental status characterized by confusion, inattention and a fluctuating level of arousal, is a common problem in critically ill patients. Delirium prolongs hospital stay and is associated with higher mortality. The pathophysiology of delirium has not been fully elucidated.
View Article and Find Full Text PDFIntroduction: Hyperosmotic therapy with mannitol is frequently used for treatment cerebral edema, and 320 mOsm/kg HO has been recommended as a high limit for therapeutic plasma osmolality. However, plasma hyperosmolality may impair cardiac function, increasing the risk of cardiac events. The aim of this study was to analyze the relation between changes in plasma osmolality and electrocardiographic variables and cardiac arrhythmia in patients treated for isolated traumatic brain injury (iTBI).
View Article and Find Full Text PDFTachycardia and supraventricular tachyarrhythmias often impair cardiovascular capacity in patients with decompensated heart failure (dHF) treated with inotropes. Normalization of heart rhythm or rate typically improves diastolic filling and stroke volume (SV). Thus, isochronal administration of an ultra-short-acting and highly selective β-blockers, such as landiolol, along with inotropic calcium-sensitizer medications, such as levosimendan, could benefit patients with dHF.
View Article and Find Full Text PDFIntroduction: Neutrophil-lymphocyte count ratio (NLCR) is a simple and low-cost marker of inflammatory response. NLCR has shown to be a sensitive marker of clinical severity in inflammatory-related tissue injury, and high value of NLCR is associated with poor outcome in traumatic brain injured (TBI) patients. The purpose of this study was to retrospectively analyze NLCR and its association with outcome in a cohort of TBI patients in relation to the type of brain injury.
View Article and Find Full Text PDF