Purpose: Experimental assessment of inter-centre variation and absolute accuracy of stopping-power-ratio (SPR) prediction within 17 particle therapy centres of the European Particle Therapy Network.
Material And Methods: A head and body phantom with seventeen tissue-equivalent materials were scanned consecutively at the participating centres using their individual clinical CT scan protocol and translated into SPR with their in-house CT-number-to-SPR conversion. Inter-centre variation and absolute accuracy in SPR prediction were quantified for three tissue groups: lung, soft tissues and bones.
Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice.
View Article and Find Full Text PDFThe magneto-chemical interaction of spin-bearing molecules with substrates is interesting from a coordination chemistry point of view and relevant for spintronics. Unprecedented insight is provided by X-ray photo-emission electron microscopy combined with X-ray magnetic circular dichroism spectroscopy. Here the coupling of a Mn-porphyrin ad-layer to the ferromagnetic Co substrate through suitably modified interfaces is analyzed with this technique.
View Article and Find Full Text PDFThe on-surface ligation of nitric oxide (NO) with Co-tetraphenylporphyrin (CoTPP) sublimed onto oxygen-reconstructed Ni(001) is studied using room-temperature scanning tunneling microscopy (STM) and complementary photoemission spectroscopies. On the oxygen-reconstructed substrates, the porphyrins are observed to form well-ordered, self-assembled layers. STM directly images the NO ligand as a characteristic feature in the center of the molecule.
View Article and Find Full Text PDFAmazing ammonia: The molecular spin state of Ni(II) porphyrin, supported on a ferromagnetic Co surface, can be reversibly switched between spin-off (S = 0) and spin-on (S = 1) states upon coordination and decoordination of the gaseous ligand NH3, respectively (see picture). This finding clearly indicates the possible use of the system as a single-molecule-based magnetochemical sensor and in spintronics.
View Article and Find Full Text PDFThe presence of an oxygen reconstruction on the Cu(001) surface results in the self-metalation of 5,10,15,20-tetraphenylporphyrin (2HTPP) below room temperature (at ~285 K), in contrast to 2HTPP on the bare Cu(001) substrate, where a temperature of ~450 K is required. This study demonstrates the decisive impact of a surface reconstruction on the redox reaction in the solvent-free ultra-high vacuum environment.
View Article and Find Full Text PDFA bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3).
View Article and Find Full Text PDF