Publications by authors named "Dorota Konopka-Postupolska"

Cellular calcium (Ca) transients are endogenous signals involved in local and systemic signaling and defense activation upon environmental stress, including wounding and herbivory. Still, not all Ca channels contributing to the signaling have been identified, nor are their modes of action fully known. Plant annexins are proteins capable of binding to anionic phospholipids and can exhibit Ca channel-like activity.

View Article and Find Full Text PDF

This article comments on: . 2020. RPK1 and BAK1 sequentially form complexes with OST1 to regulate ABA-induced stomatal closure.

View Article and Find Full Text PDF

Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow.

View Article and Find Full Text PDF

Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.

View Article and Find Full Text PDF

A technique for the selective loosening of the cell wall structure and the isolation of proteins permanently knotted in the cell walls was elaborated. Following treatment with collagenase, some proteins, such as calreticulin (CRT) and auxin binding protein 1 (ABP1) were released from purified cell walls, most probably through destruction of respective interacting proteins. The results were confirmed by the immunolocalization of the ABP1 and CRT with confocal and electron microscopy.

View Article and Find Full Text PDF

Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down-regulation of nuclear cap-binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs.

View Article and Find Full Text PDF

Knowledge accumulated over the past 15 years on plant annexins clearly indicates that this disparate group of proteins builds on the common annexin function of membrane association, but possesses divergent molecular mechanisms. Functionally, the current literature agrees on a key role of plant annexins in stress response processes such as wound healing and drought tolerance. This is contrasted by only few established details of the molecular level mechanisms that are driving these activities.

View Article and Find Full Text PDF

Accumulating evidence suggest that certain annexins can play a role in abiotic stress responses in plants. We found that for one member of the Arabidopsis thaliana annexin gene family, annexin 1 (AnnAt1), loss-of-function mutants are more sensitive to drought stress and gain-of-function mutants are more tolerant. We also found that AnnAt1 is able to regulate accumulation of H(2)O(2) in vivo in Arabidopsis cells based on the observation that the level of ROS accumulation following induction by ABA correlates with the level of AnnAt1 protein in transgenic Arabidopsis plants.

View Article and Find Full Text PDF

Annexins act as targets of calcium signals in eukaryotic cells, and recent results suggest that they play an important role in plant stress responses. We found that in Arabidopsis (Arabidopsis thaliana), AnnAt1 (for annexin 1) mRNA levels were up-regulated in leaves by most of the stress treatments applied. Plants overexpressing AnnAt1 protein were more drought tolerant and knockout plants were more drought sensitive than ecotype Columbia plants.

View Article and Find Full Text PDF

Infection with avirulent pathogens, tobacco mosaic virus (TMV) or Pseudomonas syringae pv. tabaci induced accumulation of polyisoprenoid alcohols, solanesol and a family of polyprenols [from polyprenol composed of 14 isoprene units (Pren-14) to -18, with Pren-16 dominating] in the leaves of resistant tobacco plants Nicotiana tabacum cv. Samsun NN.

View Article and Find Full Text PDF

Tobacco plants (Nicotiana tabacum cv. Xanthi-nc) infiltrated with either of two pathovars of Pseudomonas syringae- an avirulent strain of P. syringae pv.

View Article and Find Full Text PDF

On the basis of earlier reports suggesting that annexin A1 from Arabidopsis thaliana (AnnAt1) participates in limiting the excessive levels of reactive oxygen species during oxidative burst in plants, we examined the sensitivity of recombinant AnnAt1 to hydrogen peroxide and its peroxidase activity. Purified recombinant protein remains mostly alpha-helical and binds to lipids in a calcium-dependent manner. Upon oxidation recombinant AnnAt1 exhibits a tendency to form dimers in vitro.

View Article and Find Full Text PDF