Hydrogel materials based on sodium alginate find versatile applications in regenerative medicine and tissue engineering due to their unique properties, such as biocompatibility and biodegradability, and the possibility of the customization of their mechanical properties, such as in terms of the individual requirements of separate clinical applications. These materials, however, have numerous limitations in the area of biological activity. In order to eliminate their limitations, sodium alginate is popularly applied in combination with added gelatin, which represents a product of collagen hydrolysis.
View Article and Find Full Text PDFAn injectable hydrogel formulation is developed utilizing low- and high-molecular-weight chitosan (LCH and HCH) incorporated with curcumin and α-tocopherol-loaded liposomes (Lip/Cur+Toc). Cur and Toc releases are delayed within the hydrogels. The injectability of hydrogels is proved via rheological analyses.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
March 2023
Hydrogel materials provide an extremely promising group of materials that can find an increasingly wide range of use in treating urinary system conditions due to their unique properties. The present review describes achievements to date in terms of the use and development prospects of hydrogel materials applications in the treatment and reconstruction of the urinary system organs, which among others include: hydrogel systems of intravesical drug delivery, ureteral stents design, treatment of vesicoureteral reflux, urinary bladder and urethral defects reconstruction, design of modern urinary catheters and also solutions applied in urinary incontinence therapy (Figure 4). In addition, hydrogel materials find increasingly growing applications in the construction of educational simulation models of organs and specific conditions of the urinary system, which enable the education of medical personnel.
View Article and Find Full Text PDFNew scaffold materials composed of biodegradable components are of great interest in regenerative medicine. These materials should be: stable, nontoxic, and biodegrade slowly and steadily, allowing the stable release of biodegradable and biologically active substances. We analyzed peptide-polysaccharide conjugates derived from peptides containing RGD motif (H-RGDS-OH (), H-GRGDS-NH (), and cyclo(RGDfC) ()) and polysaccharides as scaffolds to select the most appropriate biomaterials for application in regenerative medicine.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2023
Alginate-gelatin hydrogels are the most commonly used materials for 3D bioprinting. Their printability depends on their properties, and these derive from the way they are prepared and their very composition. Therefore, the aim of the study was to investigate the type of solvent (deionized water, phosphate buffer, and culture medium) and contents of gelatin in the composition of hydrogel (2% wt/vol alginate, 6% and 9% wt/vol of gelatin) on their biological, physicochemical, and mechanical properties, as well as printability and the ability of cells to proliferate in the printed structures.
View Article and Find Full Text PDFCemented arthroplasty is a common process to fix prostheses when a patient becomes older and his/her bone quality deteriorates. The applied cements are biocompatible, can transfer loads, and dampen vibrations, but do not provide antibacterial protection. The present work is aimed at the development of cement with antibacterial effectivity achieved with the implementation of nanoparticles of different metals.
View Article and Find Full Text PDFSilver and copper as additives of various biomaterials have been reported as the potential solutions for biomedicine applications, mostly because of inducing bactericidal effects. The application of those admixtures in diamond-like carbon (DLC) coatings may be desirable for orthopedic implants. In the present manuscript, the biological effect of coatings with up to about 7 at.
View Article and Find Full Text PDFThe 3D printing technologies used for medical applications are mostly based on paste extruders. These are designed for high capacity, and thus often feature large material reservoirs and large diameter nozzles. A major challenge for most 3D printing platforms is a compromise between speed, accuracy, and/or volume/mass of moving elements.
View Article and Find Full Text PDFHydrogels tested and evaluated in this study were developed for the possibility of their use as the bioinks for 3D direct bioprinting. Procedures for preparation and sterilization of hydrogels and the speed of the bioprinting were developed. Sodium alginate gelatine hydrogels were characterized in terms of printability, mechanical, and biological properties (viability, proliferation ability, biocompatibility).
View Article and Find Full Text PDFDiamond-like carbon (DLC) coatings are well known as protective coatings for biomedical applications. Furthermore, the incorporation of different elements, such as silicon (Si), in the carbon matrix changes the bio-functionality of the DLC coatings. This has also been proven by the results obtained in this work.
View Article and Find Full Text PDFWe report on the selection by combinatorial pulsed laser deposition of Silver-doped Carbon structures with reliable physical-chemical characteristics and high efficiency against microbial biofilms. The investigation of the films was performed by scanning electron microscopy, high resolution atomic force microscopy, energy dispersive X-Ray Spectroscopy, X-ray diffraction, Raman spectroscopy, bonding strength "pull-out" tests, and surface energy measurements. In vitro biological assays were carried out using a large spectrum of bacterial and fungal strains, i.
View Article and Find Full Text PDFSince the biological response of the body towards an implanted material is mainly governed by its surface properties, biomaterials are improved by various kinds of coatings. Their role is to provide good mechanical and biological characteristics, and exclude some disadvantages like post-implantation infections. This phenomenon may be reduced by introduction of silver as an antibacterial agent.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2010
In this paper the surface condition of jeweller's metallic material covered by nanostructured carbon layer after the in vitro model test was investigated. The phenomenon of body modification has made that the most popular and the most often applied is jewellery made of metals like stainless steel, titanium and its alloys. However these kinds of metals are not safe and can cause health complications.
View Article and Find Full Text PDF