Dengue virus (DENV) is the most common mosquito-borne viral disease. The World Health Organization estimates that 400 million new cases of dengue fever occur every year. Approximately 500,000 individuals develop severe and life-threatening complications from dengue fever, such as dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF), which cause 22,000 deaths yearly.
View Article and Find Full Text PDFVaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain.
View Article and Find Full Text PDFMonkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible.
View Article and Find Full Text PDFAdenoviruses (Ads) are promising vectors for therapeutic interventions in humans. When injected into the bloodstream, Ad vectors can bind several vitamin K-dependent blood coagulation factors, which contributes to virus sequestration in the liver by facilitating transduction of hepatocytes. Although both coagulation factors FVII and FX bind the hexon protein of human Ad serotype 5 (HAdv5) with a very high affinity, only FX appears to play a role in mediating Ad-hepatocyte transduction in vivo.
View Article and Find Full Text PDFAlthough coagulation factors play a role in host defense for "living fossils" such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding-ablated virus failed to activate a distinct network of nuclear factor κB-dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling.
View Article and Find Full Text PDFOncolytic (replication-competent) adenoviruses (Ads) represent the most advanced platform for cancer gene therapy. These viral vectors ablate tumors by killing tumor cells in the process of virus replication. As progeny virions are released, they infect remaining cancer cells, generating a bystander effect.
View Article and Find Full Text PDFOncolytic virotherapy makes use of the natural ability of viruses to infect and kill cancer cells. Adenovirus serotype 5 (Ad5) has been approved for use in humans as a therapy for solid cancers. In this study, we have tested whether Ad5 and low-seroprevalence adenoviruses can be used as oncolytics for multiple myeloma (MM).
View Article and Find Full Text PDFOne of the significant hurdles toward safe and efficacious systemic treatment of cancer with oncolytic adenoviruses (Ads) is dose-limiting hepatotoxicity that prevents the increase of a therapeutic dose. In this study, we expanded the therapeutic window of oncolytic serotype 5 Ad (Ad5) by a genetic modification of hypervariable loop 5 (HVR5) in the capsid protein hexon that prevented infection of hepatocytes due to ablation of binding to blood factors. This oncolytic virus, Ad-GL-HB, had significantly reduced levels of hepatocyte transduction in immunocompetent and immunodeficient mice as compared to parental virus Ad-GL.
View Article and Find Full Text PDFOncolytic adenoviruses are anticancer agents that replicate within tumors and spread to uninfected tumor cells, amplifying the anticancer effect of initial transduction. We tested whether coating the viral particle with polyethylene glycol (PEG) could reduce transduction of hepatocytes and hepatotoxicity after systemic (intravenous) administration of oncolytic adenovirus serotype 5 (Ad5). Conjugating Ad5 with high molecular weight 20-kDa PEG but not with 5-kDa PEG reduced hepatocyte transduction and hepatotoxicity after intravenous injection.
View Article and Find Full Text PDFOncolytic (replication-competent) adenoviruses as anticancer agents provide new, promising tools to fight cancer. In support of a Phase I clinical trial, here we report safety data with INGN 007 (VRX-007), an oncolytic adenovirus with increased anti-tumor efficacy due to overexpression of the adenovirus-encoded ADP protein. Wild-type adenovirus type 5 (Ad5) and a replication-defective version of Ad5 were also studied as controls.
View Article and Find Full Text PDFPreclinical biodistribution studies with INGN 007, an oncolytic adenovirus (Ad) vector, supporting an early stage clinical trial were conducted in Syrian hamsters, which are permissive for Ad replication, and mice, which are a standard model for assessing toxicity and biodistribution of replication-defective (RD) Ad vectors. Vector dissemination and pharmacokinetics following intravenous administration were examined by real-time PCR in nine tissues and blood at five time points spanning 1 year. Select organs were also examined for the presence of infectious vector/virus.
View Article and Find Full Text PDFLiver tropism of systemically delivered adenoviruses (Ad) represents a considerable challenge for their use as anticancer therapeutics. More than 90% of i.v.
View Article and Find Full Text PDFWe have previously described oncolytic adenovirus (Ad) vectors KD3 and KD3-interferon (IFN) that were rendered cancer-specific by mutations in the E1A region of Ad; these mutations abolish binding of E1A proteins to p300/CBP and pRB. The antitumor activity of the vectors was enhanced by overexpression of the Adenovirus Death Protein (ADP, E3-11.6K) and by replication-linked expression of IFN-alpha.
View Article and Find Full Text PDFA short open reading frame named the "U exon," located on the adenovirus (Ad) l-strand (for leftward transcription) between the early E3 region and the fiber gene, is conserved in mastadenoviruses. We have observed that Ad5 mutants with large deletions in E3 that infringe on the U exon display a mild growth defect, as well as an aberrant Ad E2 DNA-binding protein (DBP) intranuclear localization pattern and an apparent failure to organize replication centers during late infection. Mutants in which the U exon DNA is reconstructed have a reversed phenotype.
View Article and Find Full Text PDFAdenovirus research often requires purified high-titer virus stocks and accurate virus titers for use in experiments. Accurate titers are important for quantitative, interpretable, and reproducible results. This is especially true when there are comparisons of different mutant viruses following infection.
View Article and Find Full Text PDFNovel approaches are needed to improve the antitumor potency and to increase the cancer specificity of oncolytic adenoviruses (Ad). We hypothesized that the combination of interferon-alpha (IFN-α) expression with a specific mutation in the e1a gene of Ad could target vector replication to genetic defects in the IFN-α pathway resulting in both improved antitumor efficacy and reduced toxicity. The conditionally replicative Ad vector KD3-IFN carries the dl1101/1107 mutation in the e1a gene that eliminates binding of E1A proteins to p300/CBP and pRb.
View Article and Find Full Text PDFNovel approaches are needed to improve the antitumor potency and to increase the cancer specificity of oncolytic adenoviruses (Ad). We hypothesized that the combination of interferon-alpha (IFN-alpha) expression with a specific mutation in the e1a gene of Ad could target vector replication to genetic defects in the IFN-alpha pathway resulting in both improved antitumor efficacy and reduced toxicity. The conditionally replicative Ad vector KD3-IFN carries the dl1101/1107 mutation in the e1a gene that eliminates binding of E1A proteins to p300/CBP and pRb.
View Article and Find Full Text PDFWe have constructed a novel oncolytic adenovirus (Ad) vector, named VRX-011, in which the replication of the vector is targeted to cancer cells by the replacement of the wild-type Ad E4 promoter with the human telomerase reverse transcriptase (hTERT) promoter. Genes in the Ad E4 transcription unit are essential for Ad replication; therefore, VRX-011 will grow efficiently only in cells in which the hTERT promoter is active, that is, in a wide range of cancer and immortalized cells but not in most somatic cells. Consistent with these expectations, VRX-011 replicated efficiently in all cancer cell lines examined, while its growth was restricted in various primary and normal cells.
View Article and Find Full Text PDFAvian adenovirus CELO is a novel adenovirus vector system with the advantages of efficient production, high virion stability, and the absence of crossreactivity with Ad5-neutralizing antibodies. In this study, we evaluated the anticancer efficacy of a CELO vector encoding the herpes simplex virus type 1 thymidine kinase, a prodrug-activating therapeutic gene. Vectors carrying the gene for HSV-tk or EGFP under the control of the HCMV promoter in place of the "nonessential" region of the CELO genome were constructed.
View Article and Find Full Text PDFOncolytic human adenovirus (Ad) vectors exert their antitumor effect by replicating in and lysing tumor cells. These vectors are commonly evaluated in immunodeficient mice bearing human tumor xenografts. However, this model suffers because the mice are immunodeficient and are not permissive for human Ads.
View Article and Find Full Text PDFThe majority of proteins encoded in the early 3 (E3) region of human subgroup C adenoviruses function to modulate the host immune response. For example, gp19K, one of these E3 proteins, prevents the major histocompatibility complex type I (MHC-I) from presenting viral antigens on the surface of the infected cell. Other E3 proteins, such as the RID and 14.
View Article and Find Full Text PDFAdenoviruses (Ads) encode several proteins within the early region 3 (E3) transcription unit that help protect infected cells from elimination by the immune system. Among these immunomodulatory proteins, the receptor internalization and degradation (RID) protein complex, which is composed of the RIDalpha (formerly E3-10.4K) and RIDbeta (formerly E3-14.
View Article and Find Full Text PDFWe have constructed a novel oncolytic adenovirus (Ad) vector named VRX-009 that combines enhanced cell spread with tumor-specific replication. Enhanced spread, which could significantly increase antitumor efficacy, is mediated by overexpression of the Ad cytolytic protein named ADP (also known as E3-11.6K).
View Article and Find Full Text PDFIn our study, a recombinant adenovirus based on the avian adenovirus CELO genome, has been constructed that contains the human interleukin-2 gene. We have shown the production of biologically active recombinant interleukin-2 in vitro (LMH and 293 cells) and in ovo (chicken embryos) infected with recombinant virus CELO-IL2. An increase in the median survival time of C57BL/6 mice carrying B16 melanoma tumors has been demonstrated after multiple intra-tumors injections of the recombinant adenovirus CELO-IL2.
View Article and Find Full Text PDF