The outbreak of the Coronavirus disease 2019 (COVID-19), and the drastic measures taken to mitigate its spread through imposed social distancing, have brought forward the need to better understand the underlying factors controlling spatial distribution of human activities promoting disease transmission. Focusing on results from 17,250 epidemiological investigations performed during early stages of the pandemic outbreak in Israel, we show that the distribution of carriers of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes COVID-19, is spatially correlated with two satellite-derived surface metrics: night light intensity and landscape patchiness, the latter being a measure to the urban landscape's scale-dependent spatial heterogeneity. We find that exposure to SARS-CoV-2 carriers was significantly more likely to occur in "patchy" parts of the city, where the urban landscape is characterized by high levels of spatial heterogeneity at relatively small, tens of meters scales.
View Article and Find Full Text PDF