Publications by authors named "Dornand J"

To develop intracellularly within phagocytes and cause chronic infection, Brucella must overcome different steps of the host immune responses. IFNgamma is a key mediator of the innate and adaptive responses produced during Brucella infection. Therefore, Brucella would control host defenses by impairing macrophage responses to IFNgamma.

View Article and Find Full Text PDF

Dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to infection with the intracellular bacteria Brucella. Infection with living Brucella prevents infected human DCs from engaging in maturation processes, thus impairing their capacity to present antigens to naïve T cells and to secrete IL-12. Recently, we have established that several attenuated mutants of Brucella (rough, omp25, bvrR) are unable to control DCs maturation and thus effectively stimulate naïve T cells, which could be the origin of the protective immunity elicited by these mutants in vivo.

View Article and Find Full Text PDF

Brucella is a facultative intracellular pathogen of various mammals and the etiological agent of brucellosis. We recently demonstrated that dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to Brucella infection. Furthermore, Brucella prevented the infected DCs from engaging in maturation processes and impaired their capacity to present antigen to naive T cells and to secrete interleukin-12 (IL-12).

View Article and Find Full Text PDF

Brucella is a facultative intracellular pathogen and the etiological agent of brucellosis. In some cases, human brucellosis results in a persistent infection that may reactivate years after the initial exposure. The mechanisms by which the parasite evades clearance by the immune response to chronically infect its host are unknown.

View Article and Find Full Text PDF

In a previous study, we analysed the synthesis and properties of a series of imidazo[1,2-alpha]quinoxalines designed in our laboratory as possible imiquimod analogues. We found that these imidazo[1,2-alpha]quinoxalines were in fact potent inhibitors of phosphodiesterase 4 enzymes (PDE4). PDE4 inhibition normally results in an increase in intracellular cAMP which, in PBMC, induces the suppression of TNF-alpha mRNA transcription and thus cytokine synthesis.

View Article and Find Full Text PDF

Brucella is an invasive organism that multiplies and survives within eukaryotic cells. The brucellae are able to adhere to the surface of cultured epithelial cells, a mechanism that may facilitate penetration and dissemination to other host tissues. However, no adhesins that allow the bacteria to interact with the surface of epithelial cells before migration within polymorphonuclear leukocytes, monocytes and macrophages have been described.

View Article and Find Full Text PDF

A mutant of Brucella suis bearing a Tn5 insertion in norD, the last gene of the operon norEFCBQD, encoding nitric oxide reductase, was unable to survive under anaerobic denitrifying conditions. The norD strain exhibited attenuated multiplication within nitric oxide-producing murine macrophages and rapid elimination in mice, hence demonstrating that norD is essential for Brucella virulence.

View Article and Find Full Text PDF

We identified two regulators of denitrification genes in Brucella melitensis 16M: NarR, which regulates the nitrate reductase (nar) operon, and NnrA, which is involved in the expression of the last three reductases of the denitrification pathway (nirK, norB, and nosZ). NnrA is required for virulence in mice and for intracellular resistance to nitric oxide.

View Article and Find Full Text PDF

Bacteria from the Brucella genus are able to survive and proliferate within macrophages. Because they are phylogenetically closely related to macrophages, myeloid dendritic cells (DCs) constitute potential targets for Brucella bacteria. Here we report that DCs display a great susceptibility to Brucella infection.

View Article and Find Full Text PDF

By comparing smooth wild-type Brucella spp. to their rough mutants, we show that the LPS O chain restricted the activation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) pathways, thus preventing the synthesis of immune mediators that regulate host defense. We conclude that the MAPKs are a target for immune intervention by virulent smooth Brucella.

View Article and Find Full Text PDF

Brucellosis is a worldwide human zoonosis caused by intracellular bacteria of the genus Brucella. Virulence factors play an important role in allowing Brucella infection and proliferation within macrophages. Brucella enters macrophages through lipid raft microdomains, avoids phagolysosome fusion, and inhibits TNF-alpha secretion and apoptosis.

View Article and Find Full Text PDF

The basis for the interaction of Brucella species with the surface of epithelial cells before migration in the host within polymorphonuclear leucocytes is largely unknown. Here, we studied the ability of Brucella abortus and Brucella melitensis to adhere to cultured epithelial (HeLa and HEp-2) cells and THP-1-derived macrophages, and to bind extracellular matrix proteins (ECM). The brucellae adhered to epithelial cells forming localized bacterial microcolonies on the cell surface, and this process was inhibited significantly by pretreatment of epithelial cells with neuraminidase and sodium periodate and by preincubation of the bacteria with heparan sulphate and N-acetylneuraminic acid.

View Article and Find Full Text PDF

By comparing smooth wild-type Brucella strains to their rough mutants, we show that the lipopolysaccharide (LPS) O side chain of pathogenic Brucella has a dramatic impact on macrophage activation. It favors the development of virulent Brucella by preventing the synthesis of immune mediators, important for host defense. We conclude that this O chain property is firmly linked to Brucella virulence.

View Article and Find Full Text PDF

Brucella spp. are facultative intracellular bacteria that can establish themselves and cause chronic disease in humans and animals. NK cells play a key role in host defense.

View Article and Find Full Text PDF

In mice, nitric oxide (NO) production by inducible NO synthase (iNOS), is a component of the control of Brucella infection. In humans, the involvement of iNOS in infection is still a matter of debate. Based on in vitro experiments, it was recently postulated that in humans, Brucella infection tends to become chronic because NO cannot exert its deleterious effect.

View Article and Find Full Text PDF

Virulence of the intracellular pathogen Brucella for humans is mainly associated with its lipopolysaccharide (LPS) phenotype, with smooth LPS phenotypes generally being virulent and rough ones not. The reason for this association is not quite understood. We now demonstrate by flow cytometry, electron microscopy, and ELISA that human peripheral blood monocytes interact both quantitatively and qualitatively different with smooth and rough Brucella organisms in vitro.

View Article and Find Full Text PDF

Brucella spp. are intramacrophage pathogens that induce chronic infections in a wide range of mammals, including domestic animals and humans. Therefore, the macrophage response to infection has important consequences for both the survival of phagocytosed bacteria and the further development of host immunity.

View Article and Find Full Text PDF

Brucella, the causative agent of brucellosis in animals and humans, can survive and proliferate within macrophages. Macrophages mediate mouse resistance to various pathogens through the expression of the Nramp1 gene. The role of this gene in the control of Brucella infection was investigated.

View Article and Find Full Text PDF

Pathogens have developed different strategies to survive and multiply within their host. Among them is the ability to control phagocyte apoptosis while another is to affect the expression of cytokines which is necessary for a normal protective function of the immune response. To establish themselves and cause chronic disease in humans and animals, Brucella spp.

View Article and Find Full Text PDF

Human Vgamma9Vdelta2 T cells are considered to play an important role in brucellosis, as this population is dramatically increased in peripheral blood of patients during the acute phase of the infection. This T lymphocyte population has been largely demonstrated to be activated by small m.w.

View Article and Find Full Text PDF

The psychoactive component of marijuana, delta9-tetrahydrocannabinol (THC) suppresses different functions of immunocytes, including the antimicrobicidal activity of macrophages. The triggering of cannabinoid receptors of CB1 and CB2 subtypes present on leukocytes may account for these effects. We investigated the influence of specific CB1 or CB2 receptor antagonists (SR141716A and SR144528, respectively) and nonselective CB1/CB2 cannabinoid receptor agonists (CP55,940 or WIN 55212-2) on macrophage infection by Brucella suis, an intracellular gram-negative bacteria.

View Article and Find Full Text PDF

During the complex interaction between an infectious agent and a host organism, the pathogen can interfere with the host cell's programmed death to its own benefit. Induction or prevention of host cell apoptosis appears to be a critical step for determining the infection outcome. Members of the gram-negative bacterial genus Brucella are intracellular pathogens which preferentially invade monocytic cells and develop within these cells.

View Article and Find Full Text PDF

We studied, using organotypic hippocampal slices in culture, the role of pro-inflammatory cytokines, oxygen radicals and nitric oxide in neuronal death induced either by endotoxic insult [interferon (IFN) gamma, 24 h followed by lipopolysaccharide, 24 h] or by glutamate receptor-mediated excitotoxic insult. We demonstrated that neuronal death induced by endotoxic insult was absolutely dependent on the synthesis of tumour necrosis factor alpha (TNF-alpha). Indeed, TNF-alpha antibodies and SB203580, an inhibitor of p38 stress kinase known to block TNF-alpha and other cytokine synthesis, completely protected neurons from the endotoxic insult.

View Article and Find Full Text PDF

When differentiated into mature macrophages by the combination of all-trans retinoic acid and 1,25-dihydroxyvitamin D3, the human promonocytic cell lines U937 and THP-1 expressed inducible nitric oxide synthase (iNOS) transcripts. During their differentiation, the cells acquired the capacity to produce not only superoxide anion (O2.-) but also nitric oxide (.

View Article and Find Full Text PDF