Publications by authors named "Dorleta Jimenez de Aberasturi"

There is an unmet need for in vitro cancer models that emulate the complexity of human tissues. 3D-printed solid tumor micromodels based on decellularized extracellular matrices (dECMs) recreate the biomolecule-rich matrix of native tissue. Herein a 3D in vitro metastatic melanoma model that is amenable for drug screening purposes and recapitulates features of both the tumor and the skin microenvironment is described.

View Article and Find Full Text PDF

4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed.

View Article and Find Full Text PDF

Being a vital organ exposed to the external environment, the lung is susceptible to a plethora of pathogens and pollutants. This is reflected in high incidences of chronic respiratory diseases, which remain a leading cause of mortality world-wide and pose a persistent global burden. It is thus of paramount importance to improve our understanding of these pathologies and provide better therapeutic options.

View Article and Find Full Text PDF

Despite recent advances in the development of scaffold-based three-dimensional (3D) cell models, challenges persist in imaging and monitoring cell behavior within these complex structures due to their heterogeneous cell distribution and geometries. Incorporating sensors into 3D scaffolds provides a potential solution for real-time, sensing and imaging of biological processes such as cell growth and disease development. We introduce a 3D printed hydrogel-based scaffold capable of supporting both surface-enhanced Raman scattering (SERS) biosensing and imaging of 3D breast cancer cell models.

View Article and Find Full Text PDF

Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index.

View Article and Find Full Text PDF

The use of three-dimensional (3D) bioprinting has been proposed for the reproducible production of 3D disease models that can be used for high-throughput drug testing and personalized medicine. However, most such models insufficiently reproduce the features and environment of real tumors. We report the development of bioprinted 3D tumor models for breast cancer, which physically and biochemically mimic important aspects of the native tumor microenvironment, designed to study therapeutic efficacy.

View Article and Find Full Text PDF

3D-printed cell models are currently in the spotlight of medical research. Whilst significant advances have been made, there are still aspects that require attention to achieve more realistic models which faithfully represent the environment. In this work we describe the production of an artery model with cyclic expansive properties, capable of mimicking the different physical forces and stress factors that cells experience in physiological conditions.

View Article and Find Full Text PDF

Ag S nanoparticles (NPs) emerge as a unique system that simultaneously features in vivo near-infrared (NIR) imaging, remote heating, and low toxicity thermal sensing. In this work, their capabilities are extended into the fields of optical coherence tomography (OCT), as contrast agents, and NIR probes in both ex vivo and in vivo experiments in eyeballs. The new dual property for ocular imaging is obtained by the preparation of Ag S NPs ensembles with a biocompatible amphiphilic block copolymer.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperthermia is a cancer treatment method that heats tumor cells above 42 °C to induce cell death and has gained attention for its selectivity.
  • A new hybrid nanostructure was developed, combining plasmonic gold nanorods with a silica shell and iron oxide nanoparticles to respond to both magnetic fields and near-infrared light.
  • This innovative design allows for targeted separation of specific cell populations and enhanced photothermal heating, proving effective in treating human glioblastoma cells.
View Article and Find Full Text PDF

Multicompartment nanoparticles have raised great interest for different biomedical applications, thanks to the combined properties of different materials within a single entity. These hybrid systems have opened new avenues toward diagnosis and combination therapies, thus becoming preferred theranostic agents. When hybrid nanoparticles comprise magnetic and plasmonic components, both magnetic and optical properties can be achieved, which are potentially useful for multimodal bioimaging, hyperthermal therapies and magnetically driven selective delivery.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS)-encoded nanoparticles are used for bioimaging, on account of their well-defined Raman spectra and biocompatibility, which allow long incubation times with high signal stability and no cytotoxicity. However, reliable analysis of SERS bioimaging requires quantification of the amount of encoded nanoparticles that have been taken up by cells and the effect of subsequent dilution due to cellular division (mitosis). Although methods such as elemental analysis and flow cytometry can be used to quantify nanoparticle uptake, these are both end-point measurements in which a cell population is screened rather than looking at individual cells.

View Article and Find Full Text PDF

With the ever-increasing use of 3D cell models toward studying bio-nano interactions and offering alternatives to traditional 2D and experiments, methods to image biological tissue in real time and with high spatial resolution have become a must. A suitable technique therefore is surface-enhanced Raman scattering (SERS)-based microscopy, which additionally features reduced photocytotoxicity and improved light penetration. However, optimization of imaging and postprocessing parameters is still required.

View Article and Find Full Text PDF

The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, F to I transition, without affecting its (ratiometric) sensitivity toward temperature changes.

View Article and Find Full Text PDF

Visualization of intracellular pH (i-pH) using surface-enhanced Raman spectroscopy (SERS) plays an important role toward understanding of cellular processes including their interactions with nanoparticles. However, conventional two-dimensional SERS imaging often fails to take into consideration changes occurring in the whole-cell volume. We therefore aimed at obtaining a comprehensive i-pH profile of living cells by means of three-dimensional (3D) SERS imaging, thereby visualizing dynamic i-pH distribution changes in a single cell.

View Article and Find Full Text PDF

As a natural response to a stressful situation, the human body produces cortisol. For this reason, cortisol is also called "the stress hormone" and is considered to be the principal stress biomarker. Although cortisol response to stress is essential for survival, abnormal levels in biological fluids may represent serious health risks.

View Article and Find Full Text PDF

Silver is arguably the best plasmonic material in terms of optical performance. However, wide application of Ag and Ag-containing nanoparticles is usually hindered by two major drawbacks, namely, chemical degradation and cytotoxicity. We report herein a synthetic method for highly monodisperse polymer-coated Ag nanorods, which are thereby protected against external stimuli (oxidation, light, heat) and are noncytotoxic to various cell lines.

View Article and Find Full Text PDF

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products.

View Article and Find Full Text PDF

We have recently witnessed a major improvement in the quality of nanoparticles encoded with Raman-active molecules (SERS tags). Such progress relied mainly on a major improvement of fabrication methods for building-blocks, resulting in widespread application of this powerful tool in various fields, with the potential to replace commonly used techniques, such as those based on fluorescence. We present hereby a brief Perspective on surface enhanced Raman scattering (SERS) tags, regarding their composition, morphology, and structure, and describe our own selection from the current state-of-the-art.

View Article and Find Full Text PDF

This work aims at learning how the size of gold nanocarriers influences the transport of DNA-alkylating antitumoral drugs. For this purpose, we devised conjugates of mercaptoethylmitomycin C (MEMC), a DNA alkylating agent, with gold nanoparticles of different sizes (2, 5, and 14 nm), and studied how size affects drug cytotoxicity, tumor penetrability, cellular uptake, and intracellular localization using two-dimensional (2D) and three-dimensional (3D) cell models. We show that only small, 2 nm, nanoparticles can transport MEMC efficiently to the cell nucleus, whereas MEMC cell uptake is much lower when delivered by these small nanoparticles than with the larger ones.

View Article and Find Full Text PDF

Polymers and nanoparticles can be combined into different materials with applications in various fields like catalysis, biotechnology, or drug delivery, to cite just a few. Colloidal composites may vary significantly, ranging from a single nanoparticle stabilized by a polymer shell through a polymeric carrier decorated with hundreds of particles. We review here composite colloids comprising gold nanoparticles, with an emphasis in systems with potential application in surface enhanced Raman scattering (SERS).

View Article and Find Full Text PDF

Little is known about the simultaneous uptake of different engineered nanoparticle types, as it can be expected in our daily life. In order to test such co-exposure effects, murine macrophages (J774A.1 cell line) were incubated with gold (AuNPs) and iron oxide nanoparticles (FeO NPs) either alone or combined.

View Article and Find Full Text PDF

The design of compact nanoprobes for multimodal bioimaging is a current challenge and may have a major impact on diagnostics and therapeutics. Multicomponent gold-iron oxide nanoparticles have shown high potential as contrast agents in numerous imaging techniques due to the complementary features of iron oxide and gold nanomaterials. In this paper we describe novel gold-iron oxide Janus magnetic-plasmonic nanoparticles as versatile nanoprobes for multimodal imaging.

View Article and Find Full Text PDF

Exposure of cells to colloidal nanoparticles (NPs) can have concentration-dependent harmful effects. Mostly, such effects are monitored with biochemical assays or probes from molecular biology, i.e.

View Article and Find Full Text PDF

The optimization of the enhancement of Raman scattering by plasmonic effects is largely determined by the properties of the enhancing substrates. The main parameters behind this effect are related to the morphology of plasmonic nanoparticles and their relative distribution within the substrate. We focus this tutorial review on the effects of nanoparticle morphology, for the particular case of anisotropic metal nanoparticles.

View Article and Find Full Text PDF

Polymer coated gold nanospheres are proposed as a tumor selective carrier for the anticancer drug doxorubicin. Thiolated polyethyleneglycol (PEG-SH) and an inulin-amino derivative based copolymer (INU-EDA) were used as stabilizing and coating materials for 40 nm gold nanospheres. The resulting polymer coated gold nanospheres (Au@PEG-INU) showed excellent physicochemical stability and potential stealth like behavior.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: