Publications by authors named "Dorjsuren D"

Bacterial type IV secretion systems (T4SSs) are macromolecular machines that translocate effector proteins across multiple membranes into infected host cells. Loss of function mutations in genes encoding protein components of the T4SS render bacteria avirulent, highlighting the attractiveness of T4SSs as drug targets. Here, we designed an automated high-throughput screening approach for the identification of compounds that interfere with the delivery of a reporter-effector fusion protein from Legionella pneumophila into RAW264.

View Article and Find Full Text PDF

The global health emergency posed by the outbreak of Zika virus (ZIKV), an arthropod-borne flavivirus causing severe neonatal neurological conditions, has subsided, but there continues to be transmission of ZIKV in endemic regions. As such, there is still a medical need for discovering and developing therapeutical interventions against ZIKV. To identify small-molecule compounds that inhibit ZIKV disease and transmission, we screened multiple small-molecule collections, mostly derived from natural products, for their ability to inhibit wild-type ZIKV.

View Article and Find Full Text PDF

Efficient translation of human induced pluripotent stem cells (hiPSCs) requires scalable cell manufacturing strategies for optimal self-renewal and functional differentiation. Traditional manual cell culture is variable and labor intensive, posing challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions.

View Article and Find Full Text PDF

Activation-induced deaminase (AID) not only mutates DNA within the immunoglobulin loci to generate antibody diversity, but it also promotes development of B cell lymphomas. To tame this mutagen, we performed a quantitative high-throughput screen of over 90 000 compounds to see if AID activity could be mitigated. The enzymatic activity was assessed in biochemical assays to detect cytosine deamination and in cellular assays to measure class switch recombination.

View Article and Find Full Text PDF

FEN1 plays critical roles in long patch base excision repair (LP-BER), Okazaki fragment maturation, and rescue of stalled replication forks. In a clinical cohort, FEN1 overexpression is associated with aggressive phenotype and poor progression-free survival after platinum chemotherapy. Pre-clinically, FEN1 is induced upon cisplatin treatment, and nuclear translocation of FEN1 is dependent on physical interaction with importin β.

View Article and Find Full Text PDF

A novel diazaspiro[3.4]octane series was identified from a whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program.

View Article and Find Full Text PDF

The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration-response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages.

View Article and Find Full Text PDF

When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors.

View Article and Find Full Text PDF

Efficient translation of human induced pluripotent stem cells (hiPSCs) depends on implementing scalable cell manufacturing strategies that ensure optimal self-renewal and functional differentiation. Currently, manual culture of hiPSCs is highly variable and labor-intensive posing significant challenges for high-throughput applications. Here, we established a robotic platform and automated all essential steps of hiPSC culture and differentiation under chemically defined conditions.

View Article and Find Full Text PDF

Estrogen receptor α (ERα) is a key transcriptional regulator in the majority of breast cancers. ERα-positive patients are frequently treated with tamoxifen, but resistance is common. In this study, we refined a previously identified 111-gene outcome prediction-classifier, revealing FEN1 as the strongest determining factor in ERα-positive patient prognostication.

View Article and Find Full Text PDF

Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment.

View Article and Find Full Text PDF

Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays.

View Article and Find Full Text PDF

Werner syndrome (WS), an autosomal recessive genetic disorder, displays accelerated clinical symptoms of aging leading to a mean lifespan less than 50 years. The WS helicase-nuclease (WRN) is involved in many important pathways including DNA replication, recombination and repair. Replicating cells are dependent on helicase activity, leading to the pursuit of human helicases as potential therapeutic targets for cancer treatment.

View Article and Find Full Text PDF

We describe a polyacrylamide gel casting cassette that overcomes limitations of commercially available gel electrophoresis equipment. This apparatus molds a single polyacrylamide gel that can evaluate more than 200 samples in parallel, is loaded with a multichannel pipettor, and is flexible with respect to composition of the separating matrix. We demonstrate its use to characterize inhibitors of enzymes that modify protein and nucleic acid substrates.

View Article and Find Full Text PDF

The apurinic/apyrimidinic endonuclease 1 (APE1) is a protein central to the base excision DNA repair pathway and operates in the modulation of gene expression through redox-dependent and independent mechanisms. Aberrant expression and localization of APE1 in tumors are recurrent hallmarks of aggressiveness and resistance to therapy. We identified and characterized the molecular association between APE1 and nucleophosmin (NPM1), a multifunctional protein involved in the preservation of genome stability and rRNA maturation.

View Article and Find Full Text PDF

FEN1 has key roles in Okazaki fragment maturation during replication, long patch base excision repair, rescue of stalled replication forks, maintenance of telomere stability and apoptosis. FEN1 may be dysregulated in breast and ovarian cancers and have clinicopathological significance in patients. We comprehensively investigated FEN1 mRNA expression in multiple cohorts of breast cancer [training set (128), test set (249), external validation (1952)].

View Article and Find Full Text PDF

Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase.

View Article and Find Full Text PDF

The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance.

View Article and Find Full Text PDF

Human DNA polymerase kappa (pol κ) is a translesion synthesis (TLS) polymerase that catalyzes TLS past various minor groove lesions including N(2)-dG linked acrolein- and polycyclic aromatic hydrocarbon-derived adducts, as well as N(2)-dG DNA-DNA interstrand cross-links introduced by the chemotherapeutic agent mitomycin C. It also processes ultraviolet light-induced DNA lesions. Since pol κ TLS activity can reduce the cellular toxicity of chemotherapeutic agents and since gliomas overexpress pol κ, small molecule library screens targeting pol κ were conducted to initiate the first step in the development of new adjunct cancer therapeutics.

View Article and Find Full Text PDF

APE1 is an essential protein that operates in the base excision repair (BER) pathway and is responsible for ≥95% of the total apurinic/apyrimidinic (AP) endonuclease activity in human cells. BER is a major pathway that copes with DNA damage induced by several anticancer agents, including ionizing radiation and temozolomide. Overexpression of APE1 and enhanced AP endonuclease activity have been linked to increased resistance of tumor cells to treatment with monofunctional alkylators, implicating inhibition of APE1 as a valid strategy for cancer therapy.

View Article and Find Full Text PDF

FEN1, a key participant in DNA replication and repair, is the major human flap endonuclease that recognizes and cleaves flap DNA structures. Deficiencies in FEN1 function or deletion of the fen1 gene have profound biological effects, including the suppression of repair of DNA damage incurred from the action of various genotoxic agents. Given the importance of FEN1 in resolving abnormal DNA structures, inhibitors of the enzyme carry a potential as enhancers of DNA-interactive anticancer drugs.

View Article and Find Full Text PDF

Specialized DNA polymerases are involved in DNA synthesis during base-excision repair and translesion synthesis across a wide range of chemically modified DNA templates. Notable features of these enzymes include low catalytic efficiency, low processivity and low fidelity. Traditionally, in vitro studies of these enzymes have utilized radiolabeled substrates and gel electrophoretic separation of products.

View Article and Find Full Text PDF

APE1 is the major nuclease for excising abasic (AP) sites and particular 3'-obstructive termini from DNA, and is an integral participant in the base excision repair (BER) pathway. BER capacity plays a prominent role in dictating responsiveness to agents that generate oxidative or alkylation DNA damage, as well as certain chain-terminating nucleoside analogs and 5-fluorouracil. We describe within the development of a robust, 1536-well automated screening assay that employs a deoxyoligonucleotide substrate operating in the red-shifted fluorescence spectral region to identify APE1 endonuclease inhibitors.

View Article and Find Full Text PDF