KdpFABC is a high-affinity prokaryotic K uptake system that forms a functional chimera between a channel-like subunit (KdpA) and a P-type ATPase (KdpB). At high K levels, KdpFABC needs to be inhibited to prevent excessive K accumulation to the point of toxicity. This is achieved by a phosphorylation of the serine residue in the TGES motif in the A domain of the pump subunit KdpB (KdpB).
View Article and Find Full Text PDFCells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. We have reconstituted the core machinery for regulating lipid saturation in baker's yeast to study its molecular mechanism. By combining molecular dynamics simulations with experiments, we uncover a remarkable sensitivity of the transcriptional regulator Mga2 to the abundance, position, and configuration of double bonds in lipid acyl chains, and provide insights into the molecular rules of membrane adaptation.
View Article and Find Full Text PDFPotassium channels play a crucial role in the physiology of all living organisms. They maintain the membrane potential and are involved in electrical signaling, pH homeostasis, cell-cell communication and survival under osmotic stress. Many prokaryotic potassium channels and members of the eukaryotic Slo channels are regulated by tethered cytoplasmic domains or associated soluble proteins, which belong to the family of regulator of potassium conductance (RCK).
View Article and Find Full Text PDFThe unfolded protein response (UPR) is a conserved homeostatic program that is activated by misfolded proteins in the lumen of the endoplasmic reticulum (ER). Recently, it became evident that aberrant lipid compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent in activating the UPR. The underlying molecular mechanism, however, remained unclear.
View Article and Find Full Text PDFIon channel gating is essential for cellular homeostasis and is tightly controlled. In some eukaryotic and most bacterial ligand-gated K channels, RCK domains regulate ion fluxes. Until now, a single regulatory mechanism has been proposed for all RCK-regulated channels, involving signal transduction from the RCK domain to the gating area.
View Article and Find Full Text PDFParallel-stranded (ps) DNA characterized by its sugar-phosphate backbones pointing in the same direction represents an alternative pairing system to antiparallel-stranded (aps) DNA with the potential to inhibit transcription and translation. 25-mer oligonucleotides were selected containing only dA·dT base pairs to compare spin-labeled nucleobase distances over a range of 10 or 15 base pairs in ps DNA with those in aps DNA. By means of the copper(I)-catalyzed Huisgen-Meldal-Sharpless alkyne-azide cycloaddition, the spin label 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl was clicked to 7-ethynyl-7-deaza-2'-deoxyadenosine or 5-ethynyl-2'-deoxyuridine to yield 25-mer oligonucleotides incorporating two spin labels.
View Article and Find Full Text PDFGltPh from Pyrococcus horikoshii is a homotrimeric Na(+)-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site.
View Article and Find Full Text PDFEnergy coupling factor (ECF) transporters are a recently discovered class of ABC transporters that mediate vitamin uptake in prokaryotes. Characteristic for ECF-type ABC transporters are small integral membrane proteins (S-components) that bind the transported substrates with high affinity. S-components associate with a second membrane protein (EcfT) and two peripheral ATPases to form a complete ATP-dependent transporter.
View Article and Find Full Text PDFNat Struct Mol Biol
February 2013
Glt(Ph) is a Pyrococcus horikoshii homotrimeric Na(+)-coupled aspartate transporter that belongs to the glutamate transporter family. Each protomer consists of a trimerization domain involved in subunit interaction and a transporting domain with the substrate-binding site. Here, we have studied the conformational changes underlying transport by Glt(Ph) using EPR spectroscopy.
View Article and Find Full Text PDFMultiple forms of DNA damages such as base modifications, double-strand breaks, and mispairings are related to inheritable diseases, cancer, and aging. Here, the structural changes of duplex DNA upon incorporation of mismatched base pairs are examined by EPR spectroscopy. Two ethynyl-7-deaza-2'-deoxyadenosine residues separated by two nucleotides were incorporated in DNA and functionalized with 4-azido-2,2,6,6-tetramethyl-piperidine-1-oxyl (4-azido TEMPO) by the click reaction.
View Article and Find Full Text PDFKtrB is the K(+)-translocating subunit of the K(+)-uptake system KtrAB from bacteria. It is a member of the superfamily of K(+)transporters (SKT proteins) with other sub-families occurring in archaea, bacteria, fungi, plants and trypanosomes. SKT proteins may have originated from small K(+) channels by at least two gene duplication and two gene fusion events.
View Article and Find Full Text PDFNucleobase-directed spin-labeling by the azide-alkyne 'click' (CuAAC) reaction has been performed for the first time with oligonucleotides. 7-Deaza-7-ethynyl-2'-deoxyadenosine (1) and 5-ethynyl-2'-deoxyuridine (2) were chosen to incorporate terminal triple bonds into DNA. Oligonucleotides containing 1 or 2 were synthesized on a solid phase and spin labeling with 4-azido-2,2,6,6-tetramethylpiperidine 1-oxyl (4-azido-TEMPO, 3) was performed by post-modification in solution.
View Article and Find Full Text PDFRNA aptamers are in vitro-selected binding domains that recognize their respective ligand with high affinity and specificity. They are characterized by complex three-dimensional conformations providing preformed binding pockets that undergo conformational changes upon ligand binding. Small molecule-binding aptamers have been exploited as synthetic riboswitches for conditional gene expression in various organisms.
View Article and Find Full Text PDFTransmembrane stretch M(2C) from the bacterial K(+)-translocating protein KtrB is unusually long. In its middle part, termed M(2C2), it contains several small and polar amino acids. This region is flanked by the two alpha-helices M(2C1) and M(2C3) and may form a flexible gate at the cytoplasmic side of the membrane controlling K(+) translocation.
View Article and Find Full Text PDF