Near-net shape components composed of monolithic TiAlC and composites thereof, containing up to 20 vol.% AlO fibers, were fabricated by powder injection molding. Fibers were homogeneously dispersed and preferentially oriented, due to flow constriction and shear-induced velocity gradients.
View Article and Find Full Text PDFIn this study we report on the development and operational data of a metal-supported solid oxide fuel cell with a thin film electrolyte under varying conditions. The metal-ceramic structure was developed for a mobile auxiliary power unit and offers power densities of 1 W/cm² at 800 °C, as well as robustness under mechanical, thermal and chemical stresses. A dense and thin yttria-doped zirconia layer was applied to a nanoporous nickel/zirconia anode using a scalable adapted gas-flow sputter process, which allowed the homogeneous coating of areas up to 100 cm².
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2015
Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required.
View Article and Find Full Text PDFMixed proton-electron conductors (MPEC) can be used as gas separation membranes to extract hydrogen from a gas stream, for example, in a power plant. From the different MPEC, the ceramic material lanthanum tungstate presents an important mixed protonic-electronic conductivity. Lanthanum tungstate La(6-x)WO(12-y) (with y = 1.
View Article and Find Full Text PDF