The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets.
View Article and Find Full Text PDFDuring development of the spontaneously hypertensive rat (SHR), several distinct but closely related lines were generated. Most lines are resistant to hypertensive renal disease. However, the SHR-A3 line (stroke-prone SHR) experiences end-organ injury (EOI) and provides a model of injury susceptibility that can be used to uncover genetic causation.
View Article and Find Full Text PDFThe seventh iteration of the reference genome assembly for -mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets.
View Article and Find Full Text PDFBackground: We report the creation and evaluation of a de novo assembly of the genome of the spontaneously hypertensive rat, the most widely used model of human cardiovascular disease.
Methods: The genome is assembled from long read sequencing (PacBio HiFi and continuous long read data [CLR]) and scaffolded with long-range structural information obtained from Bionano optical maps and proximity ligation sequencing proximity analysis of the genome. The genome assembly was polished with Illumina short reads.
Background: The spontaneously hypertensive rat (SHR) is extensively used to study hypertension. Gut microbiota dysbiosis is a notable feature in SHR for reasons unknown. Immunoglobulin A (IgA) is a major host factor required for gut microbiota homeostasis.
View Article and Find Full Text PDFRat genomic tools have been slower to emerge than for those of humans and mice and have remained less thorough and comprehensive. The arrival of a new and improved rat reference genome, mRatBN7.2, in late 2020 is a welcome event.
View Article and Find Full Text PDFClinical use of the combination therapy of the neprilysin inhibitor sacubitril and angiotensin II type 1 receptor blocker valsartan is known to be associated with albuminuria. Albuminuria is both a risk factor for and an indicator of kidney injury. Earlier work from our laboratory reported that the agonist of angiotensin II type 2 receptor Compound 21 (C21) prevents proteinuria, albuminuria, and is reno-protective in obese Zucker rats fed high salt diet (HSD).
View Article and Find Full Text PDFThe pathogenic links between elevated blood pressure and chronic kidney disease remain obscure. This article examines progress in population genetics and in animal models of hypertension and chronic kidney disease. It also provides a critique of the application of genome-wide association studies to understanding the heritability of renal function.
View Article and Find Full Text PDFChronic cardiovascular diseases are associated with inflammatory responses within the blood vessels and end organs. The origin of this inflammation has not been certain, and neither is its relationship to disease clear. There is a need to determine whether this association is causal or coincidental to the processes leading to cardiovascular disease.
View Article and Find Full Text PDFSimilar to humans, the risk of cerebrovascular disease in stroke-prone spontaneously hypertensive rats (SHR-A3/SHRSP) arises from naturally occurring genetic variation. In the present study, we show the involvement of genetic variation affecting the store-operated calcium signaling gene, Stim1, in the pathogenesis of stroke in SHR. Stim1 is a key lymphocyte activation signaling molecule and contains functional variation in SHR-A3 that diverges from stroke-resistant SHR-B2.
View Article and Find Full Text PDFBackground Spontaneously hypertensive rats of the stroke-prone line (SHR-A3) develop hypertensive renal disease as a result of naturally occurring genetic variation. Our prior work identified a single-nucleotide polymorphism unique to SHR-A3 that results in truncation of the carboxy terminus of STIM1. The SHR-B2 line, which is also hypertensive but resists hypertensive renal injury, expresses the wild-type STIM1.
View Article and Find Full Text PDFThe risk of cerebrovascular disease in stroke-prone spontaneously hypertensive rats (SHR-A3/SHRSP) arises from naturally occurring genetic variation. In the present study we show the involvement of SHR genetic variation that affects antibody formation and function in the pathogenesis of stroke. We have tested the involvement in susceptibility to stroke of genetic variation in , the gene encoding the immunoglobulin heavy chain by congenic substitution.
View Article and Find Full Text PDFBackground: Christian Medical College (CMC), Vellore, India, a tertiary care hospital, designed a year-long Fellowship in Secondary Hospital Medicine (FSHM) for CMC graduates, with the aim to support them during rural service and be motivated to consider practicing in these hospitals. The FSHM was a blend of 15 paper-based distance learning modules, 3 contact sessions, community project work, and networking. This paper reports on the evaluation of the FSHM program.
View Article and Find Full Text PDFHigh blood pressure exerts its deleterious effects on health largely through acceleration of end-organ diseases. Among these, progressive loss of renal function is particularly important, not only for the direct consequences of kidney damage but also because loss of renal function is associated with amplification of other adverse cardiovascular outcomes. Genetic susceptibility to hypertension and associated end-organ disease is non-Mendelian in both humans and in a rodent model, the spontaneously hypertensive rat (SHR).
View Article and Find Full Text PDFBackground: We have investigated serum levels of immunoreactive marinobufagenin (MBG) in 16- to 20-week-old spontaneously hypertensive rats (SHRs)-A3 and in the normotensive Wistar-Kyoto (WKY) rat strain in the absence of salt loading, and we have investigated the genetic control of serum MBG.
Methods And Results: We genotyped the F2 progeny of an SHR-A3×WKY intercross using a genome-wide panel of 253 single-nucleotide polymorphism markers that were dimorphic between SHR-A3 and WKY and measured serum MBG by ELISA. Serum MBG levels were lower in SHR-A3 than WKY rats (0.
Physiol Genomics
November 2017
The application of gene mapping methods to uncover the genetic basis of hypertension in the inbred spontaneously hypertensive rat (SHR) began over 25 yr ago. This animal provides a useful model of genetic high blood pressure, and some of its features are described. In particular, it appears to be a polygenic model of disease, and polygenes participate in human hypertension genetic risk.
View Article and Find Full Text PDFLymphatic vessels are vital for the trafficking of immune cells from the interstitium to draining lymph nodes during inflammation. Hypertension is associated with renal infiltration of activated immune cells and inflammation; however, it is unknown how renal lymphatic vessels change in hypertension. We hypothesized that renal macrophage infiltration and inflammation would cause increased lymphatic vessel density in hypertensive rats.
View Article and Find Full Text PDFStroke-prone spontaneously hypertensive rats (SHR-A3) develop strokes and progressive kidney disease as a result of naturally occurring genetic variations. We recently identified genetic variants in immune signaling pathways that contribute to end-organ injury. The present study was designed to test the hypothesis that a dysregulated immune response promotes stroke susceptibility.
View Article and Find Full Text PDFStore-operated calcium entry (SOCE) is the mechanism by which extracellular signals elicit prolonged intracellular calcium elevation to drive changes in fundamental cellular processes. Here, we investigated the role of SOCE in the regulation of renal water reabsorption, using the inbred rat strain SHR-A3 as an animal model with disrupted SOCE. We found that SHR-A3, but not SHR-B2, have a novel truncating mutation in the gene encoding stromal interaction molecule 1 (STIM1), the endoplasmic reticulum calcium (Ca(2+)) sensor that triggers SOCE.
View Article and Find Full Text PDFCirc Cardiovasc Genet
December 2014
Background: The spontaneously hypertensive rat (SHR) strain exists in lines that contrast strongly in susceptibility to renal injury in hypertension. These inbred lines share common ancestry, and only 13% of their genomes arise from different ancestors.
Methods And Results: We used next gen sequencing to detect natural allelic variation in 5 genes of the immunoreceptor signaling pathway (IgH, Dok3, Src, Syk, and JunD) that arise from different ancestors in the injury-prone SHR-A3 and the resistant SHR-B2 lines.
We used next-generation sequencing to identify immunoglobulin heavy chain (IGH) genetic variation in two closely related hypertensive rat lines that differ in susceptibility to end-organ disease (SHR-A3 and SHR-B2). The two SHR lines differ extensively at the IGH locus from the rat reference genome sequence and from each other, creating 306 sequence unique IGH genes. Compared with IGH genes mapped in the rat reference genome sequence, 98 are null gene alleles (31 are null in both SHR lines, 45 are null in SHR-A3 only and 23 are null in SHR-B2 only).
View Article and Find Full Text PDF