Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring.
View Article and Find Full Text PDFAdolescents are at increased risk to develop substance use disorders and suffer from relapse throughout life. Targeted weakening of drug-associated memories has been shown to reduce relapse-like behavior in adult rats, however this process has been understudied in adolescents. We aimed to examine whether adolescent-formed, cocaine-associated memories could be manipulated via reconsolidation mechanisms.
View Article and Find Full Text PDFRationale: Drug use during adolescence results in a life-long risk to develop substance-use disorders. Adolescent rats are sensitive to different drug-associated cues, compared to adults; however, the contribution of adolescent-formed context-drug-associations to elicit relapse-like behavior is underexplored.
Objectives: The present study compared the effect of adolescent vs adult-formed context-drug associations to elicit time-dependent increases in cocaine-seeking behavior.
Rationale: Drug use during adolescence results in a lifelong risk to develop substance-use disorders. Adolescent rats are less reactive to cocaine-associated cues compared with adults; however, the contribution of adolescent-formed, context-drug-associations to elicit relapse-like behavior is underexplored. Although it is known that social isolation can impact drug-seeking behavior, the effects of housing conditions on context-induced, cocaine-seeking during adolescence vs adulthood are unknown.
View Article and Find Full Text PDFCocaine-use disorders are characterized by repeated relapse to drug-seeking and drug-taking behavior following periods of abstinence. Former drug users display increased activation of the orbitofrontal cortex (OFC) in response to drug-related cues, and similar phenomena are also observed in rodent models of drug relapse. The lateral, but not medial, OFC functionally contributes to the maintenance of cue-drug associations; however, less is known about the role of the ventral OFC in this process.
View Article and Find Full Text PDF