Publications by authors named "Doris Lou Demy"

Article Synopsis
  • The GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is identified as a common cause of amyotrophic lateral sclerosis (ALS), leading to motor neuron degeneration and paralysis.
  • A zebrafish model expressing glycine-proline dipeptide repeats (GP DPR) reveals that both gain- and loss-of-function effects contribute to nerve cell damage and autophagy deficits, with poly(GP) levels similar to those found in ALS patient tissues.
  • Potential treatments involving autophagy activators like rapamycin or urolithin A show promise in alleviating motor deficits and offer new therapeutic options for ALS patients by addressing key disease mechanisms.
View Article and Find Full Text PDF

Microglia are specialized macrophages responsible for the clearance of dead neurons and pathogens by phagocytosis and degradation. The degradation requires phagosome maturation and acidification provided by the vesicular- or vacuolar-type H-translocating adenosine triphosphatase (V-ATPase), which is composed of the cytoplasmic V domain and the membrane-embedded V domain. The V-ATPase a subunit, an integral part of the V domain, has four isoforms in mammals.

View Article and Find Full Text PDF

Trim33 (Tif1γ) is a transcriptional regulator that is notably involved in several aspects of hematopoiesis. It is essential for the production of erythrocytes in zebrafish, and for the proper functioning and aging of hematopoietic stem and progenitor cells (HSPCs) in mice. Here, we have found that, in zebrafish development, Trim33 is essential cell-autonomously for the lifespan of the yolk sac-derived primitive macrophages, as well as for the initial production of definitive (HSPC-derived) macrophages in the first niche of definitive hematopoiesis, the caudal hematopoietic tissue.

View Article and Find Full Text PDF

Most tissues harbor a substantial population of resident macrophages. Here, we elucidate a functional link between the Slc7a7 cationic amino acid transporter and tissue macrophages. We identified a mutant zebrafish devoid of microglia due to a mutation in the gene.

View Article and Find Full Text PDF

Neurofilaments (NFs), a major cytoskeletal component of motor neurons, play a key role in the differentiation, establishment and maintenance of their morphology and mechanical strength. The de novo assembly of these neuronal intermediate filaments requires the presence of the neurofilament light subunit (NEFL), whose expression is reduced in motor neurons in amyotrophic lateral sclerosis (ALS). This study used zebrafish as a model to characterize the NEFL homologue , which encodes two different isoforms via a splicing of the primary transcript ( and ).

View Article and Find Full Text PDF

Macrophages infiltrate and establish in developing organs from an early stage, often before these have become vascularized. Similarly, leukocytes, in general, can quickly migrate through tissues to any site of wounding. This unique capacity is rooted in their characteristic amoeboid motility, the genetic basis of which is poorly understood.

View Article and Find Full Text PDF

Parabiosis, the surgical generation of conjoined organisms sharing a common bloodstream, has been a powerful tool for studying hematopoietic cell migration and interaction with stromal niches in rodent and avian systems. We describe a technique to generate parabiotic zebrafish embryos based on blastula fusion. This procedure permits the in vivo visualization of hematopoietic cell migration and homing to niches and peripheral tissues in zebrafish parabiotes of different genetic backgrounds.

View Article and Find Full Text PDF