Publications by authors named "Doris Lam"

Cognitive impairment is one of the many symptoms reported by individuals suffering from long-COVID and other post-viral infection disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). A common factor among these conditions is a sustained immune response and increased levels of inflammatory cytokines. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) are two such cytokines that are elevated in patients diagnosed with long-COVID and ME/CFS.

View Article and Find Full Text PDF

Subetadex-α-methyl (SBX-Me), a modified, polyanionic cyclodextrin scaffold, has been evaluated for its utilization as a medical countermeasure (MCM) to neutralize the effects of fentanyl and related opioids. Initial toxicity assays demonstrate that SBX-Me has a nontoxic profile, comparable to the FDA-approved cyclodextrin-based drug Sugammadex. Pharmacokinetic analysis showed rapid clearance of SBX-Me with an elimination half-life of ∼7.

View Article and Find Full Text PDF

Organophosphorus nerve agents (OPNA) are hazardous environmental exposures to the civilian population and have been historically weaponized as chemical warfare agents (CWA). OPNA exposure can lead to several neurological, sensory, and motor symptoms that can manifest into chronic neurological illnesses later in life. There is still a large need for technological advancement to better understand changes in brain function following OPNA exposure.

View Article and Find Full Text PDF

Dental anxiety poses challenges for providing effective oral healthcare. While therapy dogs have shown promise in various medical and mental health contexts, their use for alleviating dental anxiety in adults remains underexplored. This study aimed to investigate the emotional and physiologic effects of therapy dogs on self-reported dental anxiety.

View Article and Find Full Text PDF

While there is a growing appreciation of three-dimensional (3D) neural tissues (i.e., hydrogel-based, organoids, and spheroids), shown to improve cellular health and network activity to mirror brain-like activity , functional assessment using current electrophysiology techniques (e.

View Article and Find Full Text PDF

Fentanyl is one of the most common opioid analgesics administered to patients undergoing surgery or for chronic pain management. While the side effects of chronic fentanyl abuse are recognized (e.g.

View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) is a highly pathogenic mosquito-borne virus capable of causing hepatitis, encephalitis, blindness, hemorrhagic syndrome, and death in humans and livestock. Upon aerosol infection with RVFV, the brain is a major site of viral replication and tissue damage, yet pathogenesis in this organ has been understudied. Here, we investigated the immune response in the brain of RVFV infected mice.

View Article and Find Full Text PDF

Recent advances in microphysiological systems have made significant strides to include design features that reconstruct key elements found in the brain, and in parallel advance technologies to detect the activity of electrogenic cells that form neural networks. In particular, three-dimensional multielectrode arrays (3D MEAs) are being developed with increasing levels of spatial and temporal precision, difficult to achieve with current 2D MEAs, insertable MEA probes, and/or optical imaging of calcium dynamics. Thus, providing a means to monitor the flow of neural network activity within all three dimensions (X, Y, and Z) of the engineered tissue.

View Article and Find Full Text PDF

Trisomy 7 is the most frequently observed type of rare autosomal trisomies in genome-wide non-invasive prenatal screening (NIPS). Currently, the clinical significance of trisomy 7 NIPS-positive results is still unknown. We reviewed two independent cohorts from two laboratories where similar NIPS metrics were applied.

View Article and Find Full Text PDF

Brain-on-a-chip systems are designed to simulate brain activity using traditional in vitro cell culture on an engineered platform. It is a noninvasive tool to screen new drugs, evaluate toxicants, and elucidate disease mechanisms. However, successful recapitulation of brain function on these systems is dependent on the complexity of the cell culture.

View Article and Find Full Text PDF

Neurons form complex networks that evolve over multiple time scales. In order to thoroughly characterize these networks, time dependencies must be explicitly modeled. Here, we present a statistical model that captures both the underlying structural and temporal dynamics of neuronal networks.

View Article and Find Full Text PDF

Objective: To report genome-wide cell-free DNA (cfDNA) screening facilitating the diagnosis of Pallister-Killian syndrome (PKS).

Methods: This is a retrospective cohort analysis of positive genome-wide cfDNA screening results showing increased signal from chromosome 12 and the detection of PKS. The genome-wide cfDNA screening results and the subsequent investigations were reviewed.

View Article and Find Full Text PDF

Three-dimensional (3D) in vitro models have become increasingly popular as systems to study cell-cell and cell-ECM interactions dependent on the spatial, mechanical, and chemical cues within the environment of the tissue, which is limited in traditional two-dimensional (2D) models. Although electrophysiological recordings of neuronal action potentials through 2D microelectrode arrays (MEAs) are a common and trusted method of evaluating neuronal function, network communication, and response to chemicals and biologicals, there are currently limited options for measuring electrophysiological activity from many locations simultaneously throughout a 3D network of neurons in vitro. Here, we have developed a thin-film, 3D flexible microelectrode array (3DMEA) that non-invasively interrogates a 3D culture of neurons and can accommodate 256 channels of recording or stimulation.

View Article and Find Full Text PDF

Background: The emergence of three-dimensional (3D) cell culture in neural tissue engineering has significantly elevated the complexity and relevance of in vitro systems. This is due in large part to the incorporation of biomaterials to impart structural dimensionality on the neuronal cultures. However, a comprehensive understanding of how key seeding parameters affect changes in cell distribution and viability remain unreported.

View Article and Find Full Text PDF

The brain's extracellular matrix (ECM) is a macromolecular network composed of glycosaminoglycans, proteoglycans, glycoproteins, and fibrous proteins. In vitro studies often use purified ECM proteins for cell culture coatings, however these may not represent the molecular complexity and heterogeneity of the brain's ECM. To address this, we compared neural network activity (over 30 days in vitro) from primary neurons co-cultured with glia grown on ECM coatings from decellularized brain tissue (bECM) or MaxGel, a non-tissue-specific ECM.

View Article and Find Full Text PDF

Addressing potential sex differences in pre-clinical studies is crucial for developing therapeutic interventions. Although sex differences have been reported in epidemiological studies and from clinical experience, most pre-clinical studies of neuroinflammation use male rodents; however, sexual dimorphisms in microglia might affect the CNS inflammatory response. Developmental changes are also important and, in rodents, there is a critical period of sexual brain differentiation in the first 3 weeks after birth.

View Article and Find Full Text PDF

The cytokine, transforming growth factor β1 (TGFβ1), is up-regulated after central nervous system (CNS) injuries or diseases involving microglial activation, and it has been proposed as a therapeutic agent for treating neuroinflammation. Microglia can produce and respond to TGFβ1. While rats and mice are commonly used for studying neuroinflammation, very few reports directly compare them.

View Article and Find Full Text PDF

Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood.

View Article and Find Full Text PDF

The long-term outcomes and sustainability of antimicrobial stewardship (AMS) in the intensive care unit (ICU) require evaluation. This study analysed the effect of a multimodal ICU AMS introduced in a 15-bed medical-surgical tertiary Australian adult ICU in November 2008, using interrupted time-series analysis of antibiotic usage, Gram-negative resistance and cost from November 2005 to October 2015, including national ICU average usage as a control. Overall ICU mortality, 30-day blood stream infection (BSI) mortality and length of stay (LOS) were compared over the same period.

View Article and Find Full Text PDF

Background: Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair.

View Article and Find Full Text PDF

When microglia respond to CNS damage, they can range from pro-inflammatory (classical, M1) to anti-inflammatory, alternative (M2) and acquired deactivation states. It is important to determine how microglial functions are affected by these activation states, and to identify molecules that regulate their behavior. Microglial proliferation and migration are crucial during development and following damage in the adult, and both functions are Ca(2+)-dependent.

View Article and Find Full Text PDF

Prolonged use of the dopamine precursor L-DOPA for the treatment of Parkinson's disease commonly results in abnormal involuntary movements, which are termed L-DOPA-induced dyskinesia (LID). Over-activity at corticostriatal synapses onto neurons of the direct and indirect striatal output pathways has been implicated in the development of dyskinesia, but it has proved difficult to investigate the pathways separately due to their morphological similarities. The recent development of bacterial artificial chromosome mice that express green fluorescent protein in either the direct or indirect pathway allows visual identification of the output neurons in each pathway.

View Article and Find Full Text PDF

Objective: In Parkinson's disease, chronic striatal dopamine depletion results in over-activity and under-activity of the indirect and direct striatal output pathways respectively. In this study, we investigated changes in the function of glutamatergic cortico-striatal synapses that contribute to abnormalities in striatal efferents.

Methods: Whole-cell recordings were performed in striatal slices prepared from adult bacterial artificial chromosome mice, chronically lesioned with 6-hydroxydopamine (6-OHDA).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionok58gkgefi272nvhajid16qv10egp0nd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once