Publications by authors named "Doris Herzlinger"

Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors.

View Article and Find Full Text PDF

The principal function of glomeruli is to filter blood through a highly specialized filtration barrier consisting of a fenestrated endothelium, the glomerular basement membrane and podocyte foot processes. Previous studies have uncovered a crucial role of endothelial a disintegrin and metalloprotease 10 (ADAM10) and Notch signaling in the development of glomeruli, yet the resulting defects have not been further characterized nor understood in the context of kidney development. Here, we used several different experimental approaches to analyze the kidneys and glomeruli from mice lacking ADAM10 in endothelial cells (A10ΔEC mice).

View Article and Find Full Text PDF

The architecture of an organ's vascular bed subserves its physiological function and metabolic demands. However, the mechanisms underlying gross vascular patterning remain elusive. Using intravital dye labeling and 3D imaging, we discovered that systems-level vascular patterning in the kidney is dependent on the kinetics of vascular mural cell (VMC) differentiation.

View Article and Find Full Text PDF

The renal vascular bed has a stereotypic architecture that is essential for the kidney's role in excreting metabolic waste and regulating the volume and composition of body fluids. The kidney's excretory functions are dependent on the delivery of the majority of renal blood flow to the glomerular capillaries, which filter plasma removing from it metabolic waste, as well as vast quantities of solutes and fluids. The renal tubules reabsorb from the glomerular filtrate solutes and fluids required for homeostasis, while the post-glomerular capillary beds return these essential substances back into the systemic circulation.

View Article and Find Full Text PDF

Renal pacemakers set the origin and frequency of the smooth muscle contractions that propel wastes from the kidney to the bladder. Although congenital defects impairing this peristalsis are a leading cause of pediatric renal failure, the mechanisms underlying renal pacemaker activity remain unknown. Using ratiometric optical mapping and video microscopy, we discovered that hyperpolarization-activated cation (HCN) channel block with the specific anatagonist ZD7288 (30 μm; IC50) abolished the pacemaker depolarizations that initiate murine upper urinary tract peristalsis.

View Article and Find Full Text PDF

Kidneys remove unwanted substances from the body and regulate the internal body environment. These functions are carried out by specialized cells (podocytes) that act as a filtration barrier between the internal milieu and the outside world, and by a series of tubules and ducts that process the filtrate and convey it to the outside. In the kidneys of amniote vertebrates, the filtration (podocyte) and tubular functions are tightly integrated into functional units called nephrons.

View Article and Find Full Text PDF

Mutations in GLI3, a component of the Sonic Hedgehog (Shh) signaling pathway, cause a variety of human developmental syndromes. In this issue of the JCI, Cain and colleagues show that tightly regulated GLI3 repressor activity is essential for Shh-dependent differentiation of upper urinary tract pacemaker cells and the efficient flow of urine from the kidney to the bladder. These results link defective pacemaker cell differentiation with hydronephrosis and provide a cellular basis for one of the abnormal renal defects observed in humans with the GLI3-linked disease Pallister-Hall syndrome.

View Article and Find Full Text PDF

Peristaltic waves of the ureteric smooth muscles move urine down from the kidney, a process that is commonly defective in congenital diseases. To study the mechanisms that control the initiation and direction of contractions, we used video microscopy and optical mapping techniques and found that electrical and contractile waves began in a region where the renal pelvis joined the connective tissue core of the kidney. Separation of this pelvis-kidney junction from more distal urinary tract segments prevented downstream peristalsis, indicating that it housed the trigger for peristalsis.

View Article and Find Full Text PDF

The development of most, if not all, tubular organs is dependent on signaling between epithelial and stromal progenitor populations. Most often, these lineages derive from different germ layers that are specified during gastrulation, well in advance of organ condensation. Thus, one of the first stages of organogenesis is the integration of distinct progenitor populations into a single embryonic rudiment.

View Article and Find Full Text PDF

Embryonic blood vessel formation is initially mediated through the sequential differentiation, migration, and assembly of endothelial cells (ECs). While many molecular signals that promote vascular development have been identified, little is known about suppressors of this process. In higher vertebrates, including birds and mammals, the vascular network forms throughout the embryonic disk with the exception of a region along the midline.

View Article and Find Full Text PDF

Purpose: Congenital ureteropelvic junction obstruction has been associated with aberrant ureteral smooth muscle organization. Recent evidence has shown that BMP4 may be involved in ureteral morphogenesis. We determined whether the disruption of BMP4 signaling results in abnormal smooth muscle investment of the ureter and ureteropelvic junction.

View Article and Find Full Text PDF

Cataloguing gene expression during development of the genitourinary tract will increase our understanding not only of this process but also of congenital defects and disease affecting this organ system. We have developed a high-resolution ontology with which to describe the subcompartments of the developing murine genitourinary tract. This ontology incorporates what can be defined histologically and begins to encompass other structures and cell types already identified at the molecular level.

View Article and Find Full Text PDF

Urinary tract morphogenesis requires the sub-division of the ureteric bud (UB) into the intra-renal collecting system and ureter, two tissues with unique structural and functional properties. In this report we investigate the cellular and molecular mechanisms that mediate their differentiation. Fate mapping experiments in the developing chick indicate that the UB is surrounded by two distinct mesenchymal populations: nephrogenic mesenchyme derived from the intermediate mesoderm and tailbud-derived mesoderm, which is selectively associated with the domain of the UB that differentiates into the ureter.

View Article and Find Full Text PDF

During kidney morphogenesis, the formation of nephrons begins when mesenchymal nephron progenitor cells aggregate and transform into epithelial vesicles that elongate and assume an S-shape. Cells in different regions of the S-shaped body subsequently differentiate into the morphologically and functionally distinct segments of the mature nephron. Here, we have used an allelic series of mutations to determine the role of the secreted signaling molecule FGF8 in nephrogenesis.

View Article and Find Full Text PDF

Purpose: c-kit encodes a tyrosine kinase receptor that is required for the differentiation of a wide variety of cells during embryogenesis, including pacemaker cells of the gut. Functional expression of this tyrosine kinase receptor is required for gut peristalsis and c-kit expression has recently been documented in the adult murine urinary tract. In this study we analyzed the temporal onset of c-kit expression during ureter morphogenesis in vivo and determined if c-kit activity is essential for ureteral peristalsis in vitro.

View Article and Find Full Text PDF

Mammalian kidney morphogenesis begins when the ureteric bud (UB) induces surrounding metanephric mesenchyme to differentiate into nephrons, the functional units of the mature organ. Although several genes required for this process have been identified, the mechanisms that control final nephron number and the localization of distinct tubular segments to cortical and medullary zones of the kidney remain poorly understood. This finding is due, in part, to the lack of quantitative studies describing the acquisition of mature renal structure.

View Article and Find Full Text PDF

In addition to the traditional renin-angiotensin system, a great deal of evidence favors the existence of numerous independent tissue-specific renin-angiotensin systems. We report that mast cells are an additional source of renin and constitute a unique extrarenal renin-angiotensin system. We use renin-specific antibodies to demonstrate that cardiac mast cells contain renin.

View Article and Find Full Text PDF

Renal epithelial cells derive from either cells of the metanephric mesenchyme or ureteric bud cells, but the origin of other renal cells is unclear. To test whether metanephric mesenchymal cells generate cells other than epithelial, we examined the developmental potential of a metanephric mesenchymal cell line (7.1.

View Article and Find Full Text PDF