A variety of methods have been employed to study the impact of posttranslational modifications on Tau protein function. Here, a semisynthesis strategy is described that enables selective modification within the central repeat domain of Tau4 (residues 291-321), comprising a major interaction motive with tubulin as well as one of the key hexapeptides involved in Tau aggregation. This strategy has led to the preparation of four semisynthetic Tau variants with phosphoserine residues in different positions and one with a so far largely ignored carboxymethyllysine modification that results from a non-enzymatic posttranslational modification (nPTM).
View Article and Find Full Text PDFType II DNA-topoisomerases (topo II) play a crucial role in the maintenance of DNA topology. Previously, fungi of the Alternaria genus were found to produce mycotoxins that target human topo II. These results implied the question why a fungus should produce secondary metabolites that target a human enzyme.
View Article and Find Full Text PDFStudies on the genotoxicity of Alternaria mycotoxins focus primarily on the native compounds. Alternariol (AOH) and its methyl ether (AME) have been reported to represent substrates for cytochrome P450 enzymes, generating hydroxylated metabolites. The impact of these phase I metabolites on genotoxicity remains unknown.
View Article and Find Full Text PDFThe mycotoxins altertoxin I and II (ATX I and II) are secondary metabolites produced by Alternaria alternata fungi and may occur as food and feed contaminants, especially after long storage periods. Although the toxic potential of altertoxins has been previously investigated, little is known about the pathways that play a role in their intracellular metabolism. In order to identify potential targets of ATX I and ATX II, the two toxins were tested for interaction with the nuclear factor erythroid-derived 2-like 2/antioxidant response element (Nrf2/ARE) pathway in mammalian cells.
View Article and Find Full Text PDF