Hyaluronic acid (HA) has attracted much attention in tumor-targeted drug delivery due to its ability to specifically bind to the CD44 cellular receptor, which is widely expressed on cancer cells. We present HA-capped magnetic nanoparticles (HA-MNPs) obtained via the co-precipitation method, followed by the electrostatic adsorption of HA onto the nanoparticles' surfaces. A theoretical study carried out with the PM3 method evidenced a dipole moment of 3.
View Article and Find Full Text PDFThe present study aimed to evaluate the morphological, cytogenetic and biochemical changes in wheat seedlings as affected by seed exposure to a proton beam at the Bragg peak. The average energy of the proton beam was of 171 MeV at the entrance into the irradiator room while at the point of sample irradiation the beam energy was of 150 MeV, with the average value of the Linear Energy Transfer of 0.539 keV/μm and the dose rate of 0.
View Article and Find Full Text PDFAspartic acid stabilized iron oxide nanoparticles (A-IONPs) with globular shape and narrow size distribution were prepared by the co-precipitation method in aqueous medium. A quantum-mechanical approach to aspartic acid optimized structure displayed negative charged sites, relatively high dipole moment, and hydrophilicity, which recommended it for interaction with iron cations and surrounding water electrical dipoles. A-IONPs were characterized by TEM, XRD, ATR-FTIR, EDS, DSC, TG, DLS, NTA, and VSM techniques.
View Article and Find Full Text PDFColloidal suspensions of silver nanoparticles (AgNPs) with surface modified by capping with citrate ions were synthesized by chemical reduction method. Transmission and Scanning Electron Microscopy as well as darkfield Optical Microscopy provided information on the nanoparticle morphology, with fine symmetrical grains and log-normal fitted size distribution. Small Angle X-ray Scattering method allowed theoretical confirmation of colloidal silver nanoparticle fine granularity, based on measurements in the native fluid sample.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2018
Pyridinium-acetyl-benzoyl-methylid is a cycloimmonium ylid studied here from structural and spectral point of view. Quantum mechanical analysis offers information about the most stable spatial structure, the electro-optical properties in the ground electronic state as well as the QSAR parameters of PABM. The solvatochromic study of the visible absorption band of PABM was made in order to establish the electro-optical features of the ylid in the excited electronic state and also to approximate the contribution of different types of intermolecular interactions in solutions with different solvents.
View Article and Find Full Text PDFBackground: An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages.
Methods: In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening.
Evidence of a chaotic behavioral trend in eye movement dynamics was examined in the case of a saccadic temporal series collected from a healthy human subject. Saccades are highvelocity eye movements of very short duration, their recording being relatively accessible, so that the resulting data series could be studied computationally for understanding the neural processing in a motor system. The aim of this study was to assess the complexity degree in the eye movement dynamics.
View Article and Find Full Text PDFThe influence of iron ions supplied from magnetite nanoparticles with chemically modified surface on Pseudomonas aeruginosa germ was aimed--with experimental and theoretical approach of the intensity of the fluorescent signal emitted by the pyoverdine like siderophores. As the coated magnetic nanoparticles could function as probes, the possibility of designing a chemical device was considered based on the sensing of iron reduction from Fe(3+) into the more soluble Fe(2+), for detecting various levels of contamination (10 ÷ 10(8) cell/ml) of biological specimens and environmental samples. The proposed mathematical model estimated the fluorescence intensity due to siderophore synthesized by Pseudomonas, considering that the parameter describing the ion-bacteria interaction depends differently on the cell density for different magnetite nanoparticle coatings: linear dependence was found in the case of sodium oleate coating while power function was revealed for tetramethyl ammonium coating of magnetite nanocores, in both cases magnetite suspension being supplied in the same concentration (0.
View Article and Find Full Text PDFChlorophylls were quantitatively studied in the leaves of black locust (Robinia pseudoacacia L.) seedlings exposed to electromagnetic fields of high frequency. Exposure system was designed and built up to make possible simultaneous exposure of seedling lots (3 months old) to low power density electromagnetic fields corresponding to a frequency of 400 MHz.
View Article and Find Full Text PDF