Publications by authors named "Doriese W"

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools.

View Article and Find Full Text PDF

To test bound-state quantum electrodynamics (BSQED) in the strong-field regime, we have performed high precision x-ray spectroscopy of the 5g-4f and 5f- 4d transitions (BSQED contribution of 2.4 and 5.2 eV, respectively) of muonic neon atoms in the low-pressure gas phase without bound electrons.

View Article and Find Full Text PDF

Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on measuring the x-ray transitions in kaonic ^{3}He and ^{4}He atoms using advanced microcalorimeters, achieving high energy resolution.
  • The measured transition energies are 6224.5 eV for kaonic ^{3}He and 6463.7 eV for kaonic ^{4}He, with significantly lower width values compared to earlier findings.
  • The results challenge previous theories suggesting large interaction shifts and align more closely with predictions made by optical-potential models.
View Article and Find Full Text PDF

Bromination of high-pressure, high-temperature (HPHT) nanodiamond (ND) surfaces has not been explored and can open new avenues for increased chemical reactivity and diamond lattice covalent bond formation. The large bond dissociation energy of the diamond lattice-oxygen bond is a challenge that prevents new bonds from forming, and most researchers simply use oxygen-terminated NDs (alcohols and acids) as reactive species. In this work, we transformed a tertiary-alcohol-rich ND surface to an amine surface with ∼50% surface coverage and was limited by the initial rate of bromination.

View Article and Find Full Text PDF

We observed electronic K x rays emitted from muonic iron atoms using superconducting transition-edge sensor microcalorimeters. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic Kα and Kβ x rays together with the hypersatellite K^{h}α x rays around 6 keV.

View Article and Find Full Text PDF

We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure L x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also surveys numerous x-ray standards in order to establish an absolute-energy calibration traceable to the international system of units for the energy range 4 keV to 10 keV. The new results include emission line profiles for 97 lines, each expressed as a sum of one or more Voigt functions; improved absolute energy uncertainty on 71 of these lines relative to existing reference data; a median uncertainty on the peak energy of 0.

View Article and Find Full Text PDF

We have succeeded in operating a transition-edge sensor (TES) spectrometer and evaluating its performance at the SPring-8 synchrotron x-ray light source. The TES spectrometer consists of a 240 pixel National Institute of Standards and Technology (NIST) TES system, and 220 pixels are operated simultaneously with an energy resolution of 4 eV at 6 keV at a rate of ∼1 c/s pixel. The tolerance for high count rates is evaluated in terms of energy resolution and live time fraction, leading to an empirical compromise of ∼2 × 10 c/s (all pixels) with an energy resolution of 5 eV at 6 keV.

View Article and Find Full Text PDF

X-ray emission spectroscopy (XES) of transition metal compounds is a powerful tool for investigating the spin and oxidation state of the metal centers. Valence-to-core (vtc) XES is of special interest, as it contains information on the ligand nature, hybridization, and protonation. To date, most vtc-XES studies have been performed with high-brightness sources, such as synchrotrons, due to the weak fluorescence lines from vtc transitions.

View Article and Find Full Text PDF

Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and detection of unexpected structures in externally sourced chips, among other applications. Here, we report on a non-destructive, tabletop approach that addresses this imaging problem through x-ray tomography, which we uniquely realize with an instrument that combines a scanning electron microscope (SEM) with a transition-edge sensor (TES) x-ray spectrometer.

View Article and Find Full Text PDF

Photoinduced intramolecular electron transfer dynamics following metal-to-ligand charge-transfer (MLCT) excitation of [Fe(CN)(2,2'-bipyridine)] (), [Fe(CN)(2,3-bis(2-pyridyl)pyrazine)] () and [Fe(CN)(2,2'-bipyrimidine)] () were investigated in various solvents with static and time-resolved UV-Visible absorption spectroscopy and Fe 2p3d resonant inelastic X-ray scattering (RIXS). This series of polypyridyl ligands, combined with the strong solvatochromism of the complexes, enables the MLCT vertical energy to be varied from 1.64 eV to 2.

View Article and Find Full Text PDF

We report on the design, commissioning, and initial measurements of a Transition-Edge Sensor (TES) x-ray spectrometer for the Electron Beam Ion Trap (EBIT) at the National Institute of Standards and Technology (NIST). Over the past few decades, the NIST EBIT has produced numerous studies of highly charged ions in diverse fields such as atomic physics, plasma spectroscopy, and laboratory astrophysics. The newly commissioned NIST EBIT TES Spectrometer (NETS) improves the measurement capabilities of the EBIT through a combination of high x-ray collection efficiency and resolving power.

View Article and Find Full Text PDF

We present results obtained with a new soft X-ray spectrometer based on transition-edge sensors (TESs) composed of Mo/Cu bilayers coupled to bismuth absorbers. This spectrometer simultaneously provides excellent energy resolution, high detection efficiency, and broadband spectral coverage. The new spectrometer is optimized for incident X-ray energies below 2 keV.

View Article and Find Full Text PDF

Readout of a large, spacecraft-based array of superconducting transition-edge sensors (TESs) requires careful management of the layout area and power dissipation of the cryogenic-circuit components. We present three optimizations of our time- (TDM) and code-division-multiplexing (CDM) systems for the X-ray Integral Field Unit (X-IFU), a several-thousand-pixel-TES array for the planned Athena-satellite mission. The first optimization is a new readout scheme that is a hybrid of CDM and TDM.

View Article and Find Full Text PDF

Li- and Mn-rich (LMR) layered cathode materials have demonstrated impressive capacity and specific energy density thanks to their intertwined redox centers including transition metal cations and oxygen anions. Although tremendous efforts have been devoted to the investigation of the electrochemically driven redox evolution in LMR cathode at ambient temperature, their behavior under a mildly elevated temperature (up to ∼100 °C), with or without electrochemical driving force, remains largely unexplored. Here we show a systematic study of the thermally driven surface-to-bulk redox coupling effect in charged LiNiCoMnO.

View Article and Find Full Text PDF

Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3,168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for ESA's Athena satellite mission. X-0IFU design studies are considering readout with a multiplexing factor of up to 40. We present data showing 40-row TDM readout (32 TES rows + 8 repeats of the last row) of TESs that are of the same type as those being planned for X-IFU, using measurement and analysis parameters within the ranges specified for X-IFU.

View Article and Find Full Text PDF

The development of a superconducting analog to the transistor with extremely low power dissipation will accelerate the proliferation of low-temperature circuitry operating in the milliKelvin regime. The thin-film, magnetically actuated cryotron switch is a candidate building block for more complicated and flexible milliKelvin circuitry. We demonstrate its utility for implementing reconfigurable circuitry by integrating a cryotron switch into flux-summed code-division SQUID multiplexed readout for large arrays of transition-edge-sensor (TES) microcalorimeters.

View Article and Find Full Text PDF

We are designing an array of transition-edge sensor (TES) microcalorimeters for a soft X-ray spectrometer at the Linac Coherent Light Source at SLAC National Accelerator Laboratory to coincide with upgrades to the free electron laser facility. The complete spectrometer will have 1000 TES pixels with energy resolution of 0.5 eV full-width at half-maximum (FWHM) for incident energies below 1 keV while maintaining pulse decay-time constants shorter than 100 s.

View Article and Find Full Text PDF

We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples.

View Article and Find Full Text PDF

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples.

View Article and Find Full Text PDF

The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation.

View Article and Find Full Text PDF

Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers.

View Article and Find Full Text PDF

A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co (6.

View Article and Find Full Text PDF

Low-temperature superconducting circuits have become important for many scientific applications. However, there are presently no high current-capacity switches (~1 mA) with low power dissipation for sub-Kelvin operation. One candidate for a sub-Kelvin switch is the cryotron, a device in which the superconductivity of a wire is suppressed with a magnetic field.

View Article and Find Full Text PDF

The analysis of data from x-ray microcalorimeters requires great care; their excellent intrinsic energy resolution cannot usually be achieved in practice without a statistically near-optimal pulse analysis corrections for important systematic errors. We describe the essential parts of a pulse-analysis pipeline for data from x-ray microcalorimeters, including steps taken to reduce systematic gain variation and the unwelcome dependence of filtered pulse heights on the exact pulse-arrival time. We find these steps collectively to be essential tools for getting the best results from a microcalorimeter-based x-ray spectrometer.

View Article and Find Full Text PDF