While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs.
View Article and Find Full Text PDFAcetylsalicylic acid (ASA) is widely used in secondary prevention of cardiovascular (CV) disease, mainly because of its antithrombotic effects. Here, we investigated whether ASA can prevent the progression of vessel wall remodelling, atherosclerosis, and CV complications in apolipoprotein E deficient () mice, a model of stable atherosclerosis, and in mice with a mutation in the fibrillin-1 gene (), which is a model of elastic fibre fragmentation, accompanied by exacerbated unstable atherosclerosis. Female and mice were fed a Western diet (WD).
View Article and Find Full Text PDFAutophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles such as mitochondria (a process termed "mitophagy") via lysosomes. It is crucial for regulating protein and mitochondrial quality control and maintaining cellular homeostasis, whereas dysregulation of autophagy has been implicated in a wide range of diseases including atherosclerosis. Recent evidence has shown that the autophagic process becomes dysfunctional during the progression of atherosclerosis, regardless of whether there are many autophagy-stimulating factors (e.
View Article and Find Full Text PDFContext: - The benefit of programmed death ligand-1 (PD-L1) immunohistochemistry (IHC) as a method to select patients who may benefit from programmed death receptor-1 (PD-1)/PD-L1 immunotherapies remains uncertain in many tumor indications.
Objectives: - To compare the commercially available, approved PD-L1 IHC assays (22C3, 28-8, SP142, SP263), specifically identifying the changes in staining output created by altering the detection method.
Design: - This pilot study investigates the respective PD-L1 kit assay staining patterns and related scoring of tumor cells and immune cells on lung carcinoma and melanoma.
Aims: Cardiovascular ageing is a key determinant of life expectancy. Cellular senescence, a state of irreversible cell cycle arrest, is an important contributor to ageing due to the accumulation of damaged cells. Targeting cellular senescence could prevent age-related cardiovascular diseases.
View Article and Find Full Text PDFThe neuregulin-1 (NRG-1)/receptor tyrosine-protein kinase erbB (ErbB) system is an endothelium-controlled paracrine system modulating cardiac performance and adaptation. Recent studies have indicated that NRG-1 has antifibrotic effects in the left ventricle, which were explained by direct actions on cardiac fibroblasts. However, the NRG-1/ErbB system also regulates the function of macrophages.
View Article and Find Full Text PDFBackground And Aims: Increased evidence suggests a pro-atherogenic role for conventional dendritic cells (cDC). However, due to the lack of an exclusive marker for cDC, their exact contribution to atherosclerosis remains elusive. Recently, a unique transcription factor was described for cDC, namely Zbtb46, enabling us to selectively target this cell type in mice.
View Article and Find Full Text PDFApoptosis of macrophages and vascular smooth muscle cells (VSMCs) in advanced atherosclerotic plaques contributes to plaque progression and instability. Caspase-3, a key executioner protease in the apoptotic pathway, has been identified in human and mouse atherosclerotic plaques but its role in atherogenesis is not fully explored. We therefore investigated the impact of caspase-3 deletion on atherosclerosis by crossbreeding caspase-3 knockout (Casp3) mice with apolipoprotein E knockout (ApoE) mice.
View Article and Find Full Text PDFKey Points: Cyclic stretch is known to alter intracellular pathways involved in vessel tone regulation. We developed a novel set-up that allows straightforward characterization of the biomechanical properties of the mouse aorta while stretched at a physiological heart rate (600 beats min ). Active vessel tone was shown to have surprisingly large effects on isobaric stiffness.
View Article and Find Full Text PDFAims: Tumour cell and/or immune cell programmed cell death ligand 1 (PD-L1) expression is considered as a potential biomarker for anti-PD1 and anti-PD-L1 immunotherapy. Currently, different PD-L1 assays are used. This study aims to compare the staining patterns of two PD-L1 antibody clones in melanoma metastases and correlate them with PD-L1 mRNA expression.
View Article and Find Full Text PDFBackground And Aims: A large necrotic core is a key feature of atherosclerotic plaque instability. Necrotic cellular debris accumulates in the lipid-rich core and promotes inflammation, destabilization and ultimately rupture of the plaque. Although the role of necrosis in atherosclerosis is rather clear-cut, not many strategies have been performed up till now to specifically target plaque necrosis.
View Article and Find Full Text PDFAtherosclerosis remains the leading cause of death and disability in our Western society. To investigate whether the dynamics of leukocyte (sub)populations could be predictive for plaque inflammation during atherosclerosis, we analyzed innate and adaptive immune cell distributions in blood, plaques, and lymphoid tissue reservoirs in apolipoprotein E-deficient (ApoE(-/-)) mice and in blood and plaques from patients undergoing endarterectomy. Firstly, there was predominance of the CD11b(+) conventional dendritic cell (cDC) subset in the plaque.
View Article and Find Full Text PDFIn the last decades, the search for mechanisms underlying progressive arterial stiffening and for interventions to avoid or reverse this process has gained much attention. In general, arterial stiffening displays regional variation and is, for example, during aging more prominent in elastic than in muscular arteries. We hypothesize that besides passive also active regulators of arterial compliance [i.
View Article and Find Full Text PDFBackground: During abdominal sepsis, the inhibition of gastrointestinal (GI) motility together with mucosal barrier dysfunction will lead to increased bacterial translocation and maintenance of sepsis. The activation of the vagal anti-inflammatory pathway remains an appealing therapeutic strategy in sepsis. In this respect, selective alpha7 nicotinic acetylcholine receptor (α7nAChR) agonists have shown anti-inflammatory properties in several animal models of inflammation.
View Article and Find Full Text PDFArterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks).
View Article and Find Full Text PDFAutophagy is triggered in vascular smooth muscle cells (VSMCs) of diseased arterial vessels. However, the role of VSMC autophagy in cardiovascular disease is poorly understood. Therefore, we investigated the effect of defective autophagy on VSMC survival and phenotype and its significance in the development of postinjury neointima formation and atherosclerosis.
View Article and Find Full Text PDFVulnerable atherosclerotic plaques are prone to plaque rupture leading to acute cardiovascular syndromes and death. Elucidating the risk of plaque rupture is important to define better therapeutic or preventive strategies. In the present study, we investigated the effect of chronic intermittent mental stress on atherosclerotic plaque stability and cardiovascular mortality in apolipoprotein E-deficient (ApoE(-/-)) mice with a heterozygous mutation in the fibrillin-1 gene (Fbn1(C1039G+/)(-)).
View Article and Find Full Text PDFα1-Adrenoceptor stimulation of mouse aorta causes intracellular Ca(2+) release from sarcoplasmic reticulum Ca(2+) stores via stimulation of inositoltriphosphate (IP3) receptors. It is hypothesized that this Ca(2+) release from the contractile and IP3-sensitive Ca(2+) store is under the continuous dynamic control of time-independent basal Ca(2+) influx via L-type voltage-gated Ca(2+) channels (LCC) residing in their window voltage range. Mouse aortic segments were α1-adrenoceptor stimulated with phenylephrine in the absence of external Ca(2+) (0Ca) to measure phasic isometric contractions.
View Article and Find Full Text PDFL-type Ca2+ channel (VGCC) mediated Ca2+ influx in vascular smooth muscle cells (VSMC) contributes to the functional properties of large arteries in arterial stiffening and central blood pressure regulation. How this influx relates to steady-state contractions elicited by α1-adrenoreceptor stimulation and how it is modulated by small variations in resting membrane potential (Vm) of VSMC is not clear yet. Here, we show that α1-adrenoreceptor stimulation of aortic segments of C57Bl6 mice with phenylephrine (PE) causes phasic and tonic contractions.
View Article and Find Full Text PDFAutophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. Growing evidence reveals that basal autophagy is an essential in vivo process mediating proper vascular function. Moreover, autophagy is stimulated by many stress-related stimuli in the arterial wall to protect endothelial cells and smooth muscle cells against cell death and the initiation of vascular disease, in particular atherosclerosis.
View Article and Find Full Text PDFDifferent immune cell types are present within atherosclerotic plaques. Dendritic cells (DC) are of special interest, since they are considered as the 'center of the immuniverse'. Identifying inflammatory DC subtypes within plaques is important for a better understanding of the lesion pathogenesis and pinpoints their contribution to the atherosclerotic process.
View Article and Find Full Text PDFApolipoprotein E deficient (ApoE(-/-)) mice with a heterozygous mutation in the fibrillin-1 gene (Fbn1(C1039G+/-)) show spontaneous atherosclerotic plaque ruptures, disturbances in cerebral flow and sudden death when fed a Western-type diet (WD). The present study focused on motor coordination and spatial learning of ApoE(-/-) Fbn1(C1039G+/-) mice on WD for 20 weeks (n=21). ApoE(-/-) mice on WD (n=24) and ApoE(-/-) Fbn1(C1039G+/-) mice on normal diet (ND, n=21) served as controls.
View Article and Find Full Text PDFAlthough cancer vaccination has yielded promising results in patients, the objective response rates are low. The right choice of adjuvant might improve the efficacy. Here, we review the biological rationale, as well as the preclinical and clinical results of polyinosinic:polycytidylic acid and its derivative poly-ICLC as cancer vaccine adjuvants.
View Article and Find Full Text PDFArterial stiffening is the root cause of a range of cardiovascular complications, including myocardial infarction, left ventricular hypertrophy, stroke, renal failure, dementia, and death, and a hallmark of the aging process. The most important in vivo parameter of arterial stiffness is pulse wave velocity (PWV). Clinically, PWV is determined noninvasively using applanation tonometry.
View Article and Find Full Text PDF