Endothelial dysfunction is recognized as a cardiovascular aging hallmark. Administration of nitric oxide synthase blocker N-Ω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) constitutes a well-known small animal model of cardiovascular aging. Despite extensive phenotypic characterization, the exact aortic function changes in L-NAME treated mice are largely unknown.
View Article and Find Full Text PDFAortic stiffness is a hallmark of cardiovascular disease, but its pathophysiology remains incompletely understood. This study presents an in-dept characterization of aortic aging in male C57Bl/6 mice (2-24 months). Cardiovascular measurements include echocardiography, blood pressure measurement, and ex vivo organ chamber experiments.
View Article and Find Full Text PDFThe physiology of vascular smooth muscle (VSMC) cells is affected by autophagy, a catabolic cellular mechanism responsible for nutrient recycling. Autophagy-inducing compounds may reverse arterial stiffening, whereas congenital VSMC-specific autophagy deficiency promotes arterial stiffening. The elevated aortic stiffness in 3.
View Article and Find Full Text PDFPurpose: In the context of the current COVID-19 pandemic, multiple serological assays for the detection of severe acute respiratory syndrome 2 (SARS-CoV-2) immune response are currently being developed. This study compares the FREND COVID-19 IgG/IgM Duo (NanoEntec) a point of care (POCT) assay with the automated Elecsys anti-SARS-CoV-2 electrochemiluminescent assay (Roche Diagnostics).
Methods: Serum samples ( = 81) from PCR-confirmed SARS-CoV-2 positive patients at different time points after the onset of symptoms were analyzed with both assays.
GSK-7975A is described to inhibit stromal interaction molecule 1(STIM1)-mediated Ca release-activated Ca channels ORAI 1, ORAI 2 and ORAI 3 in different cell types. The present study investigated whether isometric contractions of mouse aortic segments were affected by this selective store-operated calcium channel inhibitor. Depending on the way by which Ca influx pathways were activated during contraction, GSK-7975A inhibited contractility of mouse aortic segments with different affinity.
View Article and Find Full Text PDFAutophagy is an important cellular survival process that enables degradation and recycling of defective organelles and proteins to maintain cellular homeostasis. Hence, defective autophagy plays a role in many age-associated diseases, such as atherosclerosis, arterial stiffening and hypertension. Recently, we showed in mice that autophagy in vascular smooth muscle cells (VSMCs) of large elastic arteries such as the aorta is important for Ca mobilization and vascular reactivity.
View Article and Find Full Text PDFAging and associated progressive arterial stiffening are both important predictors for the development of cardiovascular diseases. Recent evidence showed that autophagy, a catabolic cellular mechanism responsible for nutrient recycling, plays a major role in the physiology of vascular cells such as endothelial cells and vascular smooth muscle cells (VSMCs). Moreover, several autophagy inducing compounds are effective in treating arterial stiffness.
View Article and Find Full Text PDFExpert Opin Ther Targets
February 2020
: The incidence of age-related vascular diseases such as arterial stiffness, hypertension and atherosclerosis, is rising dramatically and is substantially impacting healthcare systems. Mounting evidence suggests that there is an important role for autophagy in maintaining (cardio)vascular health. Impaired vascular autophagy has been linked to arterial aging and the initiation of vascular disease.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2015
Autophagy is an evolutionary preserved process that prevents the accumulation of unwanted cytosolic material through the formation of autophagosomes. Although autophagy has been extensively studied to understand its function in normal physiology, the role of vascular smooth muscle (SM) cell (VSMC) autophagy in Ca(2+) mobilization and contraction remains poorly understood. Recent evidence shows that autophagy is involved in controlling contractile function and Ca(2+) homeostasis in certain cell types.
View Article and Find Full Text PDF