Background: Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition.
View Article and Find Full Text PDFGroup II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.
View Article and Find Full Text PDFMobile genetic elements either encode their own mobilization machineries or hijack them from other mobile elements. Multiple classes of mobile elements often coexist within genomes and it is unclear whether they have the capacity to functionally interact and even collaborate. We investigate the possibility that molecular machineries of disparate mobile elements may functionally interact, using the example of a retrotransposon, in the form of a mobile group II intron, found on a conjugative plasmid pRS01 in Lactococcus lactis.
View Article and Find Full Text PDFThe stable ribonucleoprotein (RNP) complex formed between the Lactococcus lactis group II intron and its self-encoded LtrA protein is essential for the intron's genetic mobility. In this study, we report the biochemical, compositional, hydrodynamic and structural properties of active group II intron RNP particles (+A) isolated from its native host using a novel purification scheme. We employed small-angle X-ray scattering to determine the structural properties of these particles as they exist in solution.
View Article and Find Full Text PDFThe influence of the cellular environment on the structures and properties of catalytic RNAs is not well understood, despite great interest in ribozyme function. Here we report on ribosome association of group II introns, which are ribozymes that are important because of their putative ancestry to spliceosomal introns and retrotransposons, their retromobility via an RNA intermediate, and their application as gene delivery agents. We show that group II intron RNA, in complex with the intron-encoded protein from the native Lactoccocus lactis host, associates strongly with ribosomes in vivo.
View Article and Find Full Text PDFIt is well understood how mobile introns home to allelic sites, but how they are stimulated to transpose to ectopic locations on an evolutionary timescale is unclear. Here we show that a group I intron can move to degenerate sites under oxidizing conditions. The phage T4 td intron endonuclease, I-TevI, is responsible for this infidelity.
View Article and Find Full Text PDFTuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world's most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism.
View Article and Find Full Text PDFGroup II introns are hypothesized to share common ancestry with both nuclear spliceosomal introns and retrotransposons, which collectively occupy the majority of genome space in higher eukaryotes. These phylogenetically diverse introns are mobile retroelements that move through an RNA intermediate. Disruption of Escherichia coli genes encoding enzymes that catalyze synthesis of global regulators cAMP and ppGpp inhibits group II intron retromobility.
View Article and Find Full Text PDFHoming endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2006
Thousands of introns have been localized to rRNA genes throughout the three domains of life. The consequences of the presence of either a spliced or an unspliced intron in a rRNA for ribosome assembly and packaging are largely unknown. To help address these questions, and to begin an intron imaging study, we selected a member of the self-splicing group II intron family, which is hypothesized to be the progenitor not only of spliceosomal introns but also of non-LTR retrotransposons.
View Article and Find Full Text PDFRetrohoming of group II introns occurs by a mechanism in which the intron RNA reverse splices directly into one strand of a DNA target site and is then reverse transcribed by the associated intron-encoded protein. Host repair enzymes are predicted to complete this process. Here, we screened a battery of Escherichia coli mutants defective in host functions that are potentially involved in retrohoming of the Lactococcus lactis Ll.
View Article and Find Full Text PDFDsrA RNA is a small (87-nucleotide) regulatory RNA of Escherichia coli that acts by RNA-RNA interactions to control translation and turnover of specific mRNAs. Two targets of DsrA regulation are RpoS, the stationary-phase and stress response sigma factor (sigmas), and H-NS, a histone-like nucleoid protein and global transcription repressor. Genes regulated globally by RpoS and H-NS include stress response proteins and virulence factors for pathogenic E.
View Article and Find Full Text PDFCatalytic group II introns are mobile retroelements that invade cognate intronless genes via retrohoming, where the introns reverse splice into double-stranded DNA (dsDNA) targets. They can also retrotranspose to ectopic sites at low frequencies. Whereas our previous studies with a bacterial intron, Ll.
View Article and Find Full Text PDF