Publications by authors named "Dorie Sher"

Myelofibrosis (MF) in the chronic phase is a challenging disease to treat, and conventional treatment options are geared toward symptom palliation. In this prospective, multicenter, phase 2 trial, 21 patients with MF (18 chronic phase, 2 accelerated phase, and 1 blast phase) were treated with a 10-day schedule of subcutaneous decitabine at 0.3 mg/kg per day.

View Article and Find Full Text PDF

Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci.

View Article and Find Full Text PDF

The addition of arsenic trioxide (ATO) to frontline therapy of acute promyelocytic leukemia (APL) has been shown to result in significant improvements in disease-free survival (DFS). FLT3 mutations are frequently observed in APL, but its prognostic significance remains unclear. We analyzed 245 newly diagnosed adult patients with APL treated on intergroup trial C9710 and evaluated previously defined biological and prognostic factors and their relationship to FLT3 mutations and to additional karyotypic abnormalities.

View Article and Find Full Text PDF

Mutations in the all-trans retinoic acid (ATRA)-targeted ligand binding domain of PML-RARα (PRα/LBD+) have been implicated in the passive selection of ATRA-resistant acute promyelocytic leukemia clones leading to disease relapse. Among 45 relapse patients from the ATRA/chemotherapy arm of intergroup protocol C9710, 18 patients harbored PRα/LBD+ (40%), 7 of whom (39%) relapsed Off-ATRA selection pressure, suggesting a possible active role of PRα/LBD+. Of 41 relapse patients coanalyzed, 15 (37%) had FMS-related tyrosine kinase 3 internal tandem duplication mutations (FLT3-ITD+), which were differentially associated with PRα/LBD+ depending on ATRA treatment status at relapse: positively, On-ATRA; negatively, Off-ATRA.

View Article and Find Full Text PDF

Background: In the present study, the prognostic impact of minimal residual disease during treatment on time to progression and overall survival was analyzed prospectively in patients with mantle cell lymphoma treated on the Cancer and Leukemia Group B 59909 clinical trial.

Design And Methods: Peripheral blood and bone marrow samples were collected during different phases of the Cancer and Leukemia Group B 59909 study for minimal residual disease analysis. Minimal residual disease status was determined by quantitative polymerase chain reaction of IgH and/or BCL-1/JH gene rearrangement.

View Article and Find Full Text PDF

A serious complication associated with breast cancer treatment is the increased risk for development of therapy-related myeloid neoplasms (t-MN). To determine whether dose-intensive adjuvant regimens for breast cancer induce genetic damage to hematopoietic stem cells, defined by the emergence of clonal hematopoiesis, and whether detection of clonal hematopoiesis could be used as an early marker for the subsequent development of t-MN, the Southwest Oncology Group designed a pilot clonality investigation to estimate the incidence of clonal hematopoiesis during and shortly after completion of the dose intensive neoadjuvant regimens for high-risk breast cancer patients. Peripheral blood samples from 274 patients obtained prior to treatment, at time of surgery, and at 6 and 12 months post-surgery were examined by two different clonality assays: the HUMARA (HUMan Androgen Receptor) assay to estimate the incidence of early genetic damage by clonal proliferation, and microsatellite instability (MSI) testing to screen for LOH or defective DNA mismatch repair mechanisms.

View Article and Find Full Text PDF

Preclinical models have demonstrated the efficacy of granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapies (GVAX platform) accompanied by immunotherapy-primed lymphocytes after autologous stem cell transplantation in hematologic malignancies. We conducted a phase 2 study of this combination in adult patients with acute myeloid leukemia. Immunotherapy consisted of autologous leukemia cells admixed with granulocyte-macrophage colony-stimulating factor-secreting K562 cells.

View Article and Find Full Text PDF

Purpose: Recruitment of histone deacetylases (HDAC) is a mechanism of transcriptional repression implicated in the differentiation block in acute myeloid leukemia (AML). We hypothesized that the HDAC inhibitor romidepsin could cause transcriptional derepression, up-regulation of specific target genes in AML, and differentiation of the leukemic clone. The primary objectives of the study were to evaluate the safety and efficacy of romidepsin in advanced AML.

View Article and Find Full Text PDF

Imatinib mesylate is the initial therapy of choice for chronic myeloid leukemia in chronic phase (CML-CP), but in some patients, the disease becomes resistant to imatinib. Autologous stem cell transplantation using cells collected while in complete cytogenetic response (CCyR) may represent a therapeutic option for these patients. We mobilized and collected autologous CD34(+) stem cells from 20 CML-CP patients in CCyR, 19 of whom were taking imatinib, and measured BCR-ABL expression in the apheresis products, blood and bone marrow using real-time quantitative PCR (RQ-PCR).

View Article and Find Full Text PDF

Molecular monitoring of the BCR-ABL transcript in chronic myelogenous leukemia (CML) using quantitative RT-PCR provides clinicians with important diagnostic and prognostic information. To determine whether molecular detection and monitoring of CML is comparable using peripheral blood (PB) and bone marrow (BM) aspirate samples, we performed a prospective study using quantitative real-time RT-PCR (QRT-PCR) of paired PB and BM samples from 41 patients with CML entered onto a single Cancer and Leukemia Group B (CALGB) treatment study. QRT-PCR analysis of PB and BM samples was performed prior to initiation of, and during, treatment with homoharringtonine and cytarabine on a CALGB study for previously untreated CML.

View Article and Find Full Text PDF

There is a current and increasing demand for simple, robust, nonradioactive assays of protein tyrosine kinase activity with applications for clinical diagnosis and high-throughput screening of potential molecularly targeted therapeutic agents. One significant challenge is to detect and measure the activity of specific kinases with key roles in cell signaling as an approach to distinguish normal cells from cancer cells and as a means of evaluating targeted drug efficacy and resistance in cancer cells. Here, we describe a method in which kinase substrates fused to glutathione-S-transferase and immobilized on glutathione agarose beads are phosphorylated, eluted, and then assayed to detect kinase activity.

View Article and Find Full Text PDF

Purposes: Pharmacologic downregulation of Bcl-2, an antiapoptotic protein overexpressed in cancer, might increase chemosensitivity in acute myeloid leukemia (AML). Herein, we investigated the feasibility of this approach in untreated elderly AML patients by administering oblimersen sodium (G3139), an 18-mer phosphorothioate antisense to Bcl-2, during induction and consolidation treatments.

Patients And Methods: Untreated patients with primary or secondary AML (stratified to cohort 1 or 2, respectively) who were > or = 60 years received induction with G3139, cytarabine, and daunorubicin at one of two different dose levels (45 and 60 mg/m2) and, on achievement of complete remission (CR), consolidation with G3139 and high-dose cytarabine.

View Article and Find Full Text PDF