Publications by authors named "Dorian Anderson"

piRNAs play a critical role in the regulation of transposons and other germline genes. In , regulation of piRNA target genes is mediated by the complex, which synthesizes high levels of siRNAs through the activity of an RNA-dependent RNA polymerase. However, the steps between mRNA recognition by the piRNA pathway and siRNA amplification by the complex are unknown.

View Article and Find Full Text PDF

In C. elegans, efficient RNA silencing requires small RNA amplification mediated by RNA-dependent RNA polymerases (RdRPs). RRF-1, an RdRP, and other Mutator complex proteins localize to Mutator foci, which are perinuclear germline foci that associate with nuclear pores and P granules to facilitate small RNA amplification.

View Article and Find Full Text PDF

During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during embryo elongation, a process driven by asymmetric epidermal cell shape changes. mutant embryos arrest during elongation with epidermal ruptures.

View Article and Find Full Text PDF

Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABA(A) receptors are stabilized by distinct synaptic scaffolds at C.

View Article and Find Full Text PDF

Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals.

View Article and Find Full Text PDF

Early embryos of some metazoans polarize radially to facilitate critical patterning events such as gastrulation and asymmetric cell division; however, little is known about how radial polarity is established. Early embryos of Caenorhabditis elegans polarize radially when cell contacts restrict the polarity protein PAR-6 to contact-free cell surfaces, where PAR-6 regulates gastrulation movements. We have identified a Rho guanosine triphosphatase activating protein (RhoGAP), PAC-1, which mediates C.

View Article and Find Full Text PDF

Fucoidan and chondroitin-6-sulfate were oversulfated using chlorosulfonic acid-pyridine complex and were isolated as the sodium salt. Infrared analysis of oversulfated compounds showed introduction of sulfate groups in new positions, and in-vitro studies of the compounds showed a significant increase in the anticoagulant property. Addition of 28.

View Article and Find Full Text PDF

Functional inactivation of divergent bone morphogenetic proteins (BMPs) causes discrete disturbances during mouse development. BMP4-deficient embryos display mesodermal patterning defects at early post-implantation stages, whereas loss of BMP7 selectively disrupts kidney and eye morphogenesis. Whether these distinct phenotypes simply reflect differences in expression domains, or alternatively intrinsic differences in the signaling properties of these ligands remains unknown.

View Article and Find Full Text PDF

Smad2 and Smad3 are closely related effectors of TGFbeta/Nodal/Activin-related signaling. Smad3 mutant mice develop normally, whereas Smad2 plays an essential role in patterning the embryonic axis and specification of definitive endoderm. Alternative splicing of Smad2 exon 3 gives rise to two distinct protein isoforms.

View Article and Find Full Text PDF

Genetic and biochemical data have identified Smad4 as a key intracellular effector of the transforming growth factor beta (TGFbeta superfamily of secreted ligands. In mouse, Smad4-null embryos do not gastrulate, a phenotype consistent with loss of other TGFbeta-related signaling components. Chimeric analysis reveals a primary requirement for Smad4 in the extra-embryonic lineages; however, within the embryo proper, characterization of the specific roles of Smad4 during gastrulation and lineage specification remains limited.

View Article and Find Full Text PDF

3-Mercapto-2(1H)-pyridinone (1) can be synthesized in three simple high-yielding steps from readily available 2-tert-butylthiazolo[4,5-b]pyridine (2). Its disodium salt condenses with o-chloronitrobenzene, 2-chloro-3-nitropyridine, and 3-chloro-4-nitropyridine 1-oxide to give respectively 4-azaphenoxathiine (10), 1,6-diazaphenoxathiine (12), and 2,6-diazaphenoxathiine 2-oxide (14) which reduces to 2,6-diazaphenoxathiine (15). The structures of these previously unreported azaphenoxathiine systems were confirmed by assignment of their respective (13)C NMR spectra.

View Article and Find Full Text PDF