Publications by authors named "Dori J Miller"

Nursing ensures lactocrine delivery of maternally derived, milk-borne bioactive factors to offspring, which affects postnatal development of female reproductive tract tissues. Disruption of lactocrine communication for two days from birth (postnatal day (PND) 0) by feeding milk replacer in lieu of nursing or consumption of colostrum alters porcine uterine gene expression globally by PND 2 and inhibits uterine gland genesis by PND 14. Here, objectives were to determine effects of: (1) nursing or milk replacer feeding from birth; (2) a single dose of colostrum or milk replacer and method of feeding and (3) a single feeding of colostrum or milk replacer, with or without oral supplementation of IGF1, administered at birth on aspects of porcine uterine development at 12-h postnatally.

View Article and Find Full Text PDF

The lactocrine hypothesis for maternal programming of female reproductive tract development is based on the idea that non-nutritive, milk-borne bioactive factors (MbFs), delivered from mother to offspring during nursing, play a role in determining the trajectory of development with long-term consequences in the adult. Porcine female reproductive tract development is completed postnatally, and the period during which maternal support of neonatal growth derives exclusively from colostrum/milk defines a window of opportunity for lactocrine programming of reproductive tissues. Beyond nutrition, milk serves as a delivery system for a variety of bioactive factors.

View Article and Find Full Text PDF

The first 2 wk of neonatal life constitute a critical period for estrogen receptor alpha (ESR1)-dependent uterine adenogenesis in the pig. A relaxin receptor (RXFP1)-mediated, lactocrine-driven mechanism was proposed to explain how nursing could regulate endometrial ESR1 and related gene expression events associated with adenogenesis in the porcine neonate during this period. To determine effects of nursing on endometrial morphogenesis and cell compartment-specific gene expression, gilts (n = 6-8/group) were assigned at birth to be either 1) nursed ad libitum for 48 h, 2) gavage fed milk replacer for 48 h, 3) nursed ad libitum to Postnatal Day (PND) 14, or 4) gavage fed milk replacer for 48 h followed by ad libitum nursing to PND 14.

View Article and Find Full Text PDF

The neonatal porcine cervix is sensitive to hormones, including relaxin (RLX), from birth. Whether nursing is required to establish the cervical developmental program or to determine cervical developmental trajectory is unknown. The objective of study 1 was to determine effects of age and nursing on expression of molecular markers and mediators of porcine cervical growth and remodeling from birth to postnatal day (PND) 2 and to document effects of RLX treatment during this period on expression of targeted gene products in nursed vs.

View Article and Find Full Text PDF

Lactocrine communication of milk-borne bioactive factors (MbFs) from mother to offspring through nursing can affect neonatal development with lasting consequences. Relaxin (RLX), a lactocrine-active peptide found in porcine colostrum, stimulates estrogen receptor-α (ESR1) expression required for uterine development shortly after birth (postnatal day=PND 0). Whether other MbFs or cooperative lactocrine mechanisms affect the neonatal uterine developmental program is unknown.

View Article and Find Full Text PDF

Porcine neonatal uterine relaxin receptor (RXFP1) expression is tissue compartment specific and estrogen sensitive. Here, procedures were established for laser microdissection, tissue capture, and quantification of the effects of perinatal exposure (14 days pre- to 21 days postnatal) to a selective estrogen receptor modulator of environmental origin, zearalenone (ZEA), on endometrial RXFP1 expression. Total RNA from captured endometrium was used to generate cDNA for quantitative reverse transcription-PCR.

View Article and Find Full Text PDF