Publications by authors named "Doreen R Glodowski"

Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.

View Article and Find Full Text PDF

Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons.

View Article and Find Full Text PDF

Regulated endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, the specific combination of clathrin-dependent and -independent mechanisms that mediate AMPAR trafficking in vivo have not been fully characterized. Here, we examine the trafficking of the AMPAR subunit GLR-1 in Caenorhabditis elegans.

View Article and Find Full Text PDF

alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPARs) mediate excitatory neurotransmission at neuronal synapses, and their regulated localization plays a role in synaptic plasticity. In Caenorhabditis elegans, the PDZ and PTB domain-containing protein LIN-10 is required both for the synaptic localization of the AMPAR subunit GLR-1 and for vulval fate induction in epithelia. Here, we examine the role that different LIN-10 domains play in GLR-1 localization.

View Article and Find Full Text PDF

The matrix (M) protein of vesicular stomatitis virus (VSV) functions from within the nucleus to inhibit bi-directional nucleocytoplasmic transport. Here, we show that M protein can be imported into the nucleus by an active transport mechanism, even though it is small enough (approximately 27 kDa) to diffuse through nuclear pore complexes. We map two distinct nuclear localization signal (NLS)-containing regions of M protein, each of which is capable of directing the nuclear localization of a heterologous protein.

View Article and Find Full Text PDF