Publications by authors named "Doreen Fang"

Deficiency in the membrane-bound complement regulators CD55 and CD59 exacerbates renal ischemia-reperfusion injury (IRI) in mouse models, but the effect of increasing CD55 and CD59 activity has not been examined. In this study, we investigated the impact of overexpression of human (h) CD55 ± hCD59 or treatment with soluble rhCD55 in a mouse model of renal IRI. Unilaterally nephrectomised mice were subjected to 18 (mild IRI) or 22 min (moderate IRI) warm renal ischemia, and analyzed 24 h after reperfusion for renal function (serum creatinine and urea), complement deposition (C3b/c and C9), and infiltration of neutrophils and macrophages.

View Article and Find Full Text PDF

Background: Activins, members of the TGF-β superfamily, are key drivers of inflammation and are thought to play a significant role in ischemia-reperfusion injury (IRI), a process inherent to renal transplantation that negatively impacts early and late allograft function. Follistatin (FS) is a protein that binds activin and inhibits its activity. This study examined the response of activin A and B in mice after renal IRI and the effect of exogenous FS in modulating the severity of renal injury.

View Article and Find Full Text PDF

Exosomes are membrane-bound vesicles of endosomal origin, present in a wide range of biological fluids, including blood and urine. They range between 30 and 100 nm in diameter, and consist of a limiting lipid bilayer, transmembrane proteins and a hydrophilic core containing proteins, mRNAs and microRNAs (miRNA). Exosomes can act as extracellular vehicles by which cells communicate, through the delivery of their functional cargo to recipient cells, with many important biological, physiological and pathological implications.

View Article and Find Full Text PDF