Publications by authors named "Doreen E Wesche-Soldato"

The use of siRNA in vivo as well as in animal models has become more widespread in recent years, leading to further questions as to the best mode of delivery that will achieve optimal knockdown. While the exact mechanism of siRNA uptake at a cellular level has yet to be fully elucidated, various delivery techniques are being researched, including the use of viral vectors of shRNA, liposome encapsulations, and hydrodynamic delivery of naked siRNA. We describe the use of hydrodynamic administration as a technique to deliver, in vivo, naked siRNA constructs into experimental animals as a method of transient gene knockdown.

View Article and Find Full Text PDF

Although studies blocking the Fas pathway indicate it can decrease organ damage while improving septic (cecal ligation and puncture, CLP) mouse survival, little is known about how Fas-Fas ligand (FasL) interactions mediate this protection at the tissue level. Here, we report that although Fas expression on splenocytes and hepatocytes is up-regulated by CLP and is inhibited by in vivo short interfering RNA, FasL as well as the frequency of CD8(+) T cells are differentially altered by sepsis in the spleen (no change in FasL, decreased percentage of CD8(+) and CD4(+) T cells) versus the liver (increased FasL expression on CD8(+) T cells and increase in percentage/number). Adoptive transfer of CLP FasL(+/+) versus FasL(-/-) mouse liver CD8(+) T cells to severe combined immunodeficient or RAG1(-/-) recipient mice indicated that these cells could induce inflammation.

View Article and Find Full Text PDF

Recent research has yielded many interesting and potentially important therapeutic targets in sepsis. Specifically, the effects of antagonistic anti-cytokine therapies (tumor necrosis factor-alpha [TNF-alpha], interleukin-1 [IL-1]) and anti-endotoxin strategies utilizing antibodies against endotoxin or endotoxin receptor/carrier molecules (anti-CD14 or anti-LPS-binding protein) have been studied. Unfortunately, these approaches often failed clinically, and in many cases, the efficacy of these treatments was dependent on the severity of sepsis.

View Article and Find Full Text PDF

Over time it has become clear that, much like other organ systems, the function and responsiveness of the immune system is impaired during the course of sepsis and that this is a precipitous event in the decline of the critically ill patient/animal. One hypothesis put forward to explain the development of septic immune dysfunction is that it is a pathological result of increased immune cell apoptosis. Alternatively, it has been proposed that the clearance of increased numbers of apoptotic cells may actively drive immune suppression through the cells that handle them.

View Article and Find Full Text PDF

Today, sepsis continues to be a growing problem in the critically ill patient population. A number of laboratories have been interested in understanding how changes in immune cell apoptosis during sepsis appear to contribute to septic morbidity. Consistently, it has been found that immune cell apoptosis is altered in a variety of tissue sites and cell populations both in experimental animals and humans.

View Article and Find Full Text PDF

Although studies have shown increased evidence of death receptor-driven apoptosis in intestinal lymphoid cells, splenocytes, and the liver following the onset of polymicrobial sepsis, little is known about the mediators controlling this process or their pathologic contribution. We therefore attempted to test the hypothesis that the hydrodynamic administration of small interfering RNA (siRNA) against the death receptor, Fas or caspase-8, should attenuate the onset of morbidity and mortality seen in sepsis, as produced by cecal ligation and puncture (CLP). We initially show that in vivo administration of green fluorescent protein (GFP) siRNA in GFP transgenic mice results in a decrease in GFP fluorescence in most tissues.

View Article and Find Full Text PDF